54**Cr(t,p)** 1968Ch20

Type Author Citation Literature Cutoff Date
Full Evaluation Balraj Singh ENSDF 25-Mar-2022

First study of levels in ⁵⁶Cr.

1968Ch20: E=11.99 MeV, measured E(p), $\sigma(\theta)$ for θ =5°-57.5°) in 7.5° steps using Aldermaston tandem accelerator and multi-angle magnetic spectrograph, with particle recording in Ilford photographic emulsion plates. Target was 97.98% enriched and thickness was 100 μ g/cm², evaporated on 10μ g/cm² thick carbon film. FWHM is estimated as ≈20 keV from displayed spectral Fig. 6 in 1968Ch20.

1971Ca19: E(t)=13 MeV. Measured absolute cross sections for the g.s. at 12.5° and 20° at Los Alamos tandem accelerator, using Elbek-type magnetic spectrograph and photographic plate detection for detection of protons. Natural Cr target 40-60 μg/cm² thick backed by a carbon foil of similar thickness. Comparison with model predictions using pairing-vibrational model with isospin.

⁵⁶Cr Levels

Measured cross sections are in arbitrary units.

Angular distribution measurement is shown for most states in Table 4 of 1968Ch20, with exceptions noted.

E(level) [†]	L#	Comments
0	0	σ (max)=153 at 5.1°. Measured absolute σ =3.13 mb/sr 46 (1971Ca19).
1011 <i>15</i>	2	measured absolute σ =5.13 mb/si 40 (1971Ca19). σ (max)=7.7 at 20.6°.
1828 <i>15</i>	2	$\sigma(\text{max})=3.7$ at 20.6° .
2322 15	2	$\sigma(\text{max})=14.7 \text{ at } 20.6^{\circ}.$
2685 <i>15</i>	4	$\sigma(\max) = 3.9 \text{ at } 36.1^{\circ}.$
3156 <i>15</i>		$\sigma(\text{max})=6.0 \text{ at } 20.6^{\circ}.$
3402 [‡] 20		$\sigma(\text{max})=0.8 \text{ at } 12.9^{\circ}.$
3451 <i>15</i>	3	$\sigma(\text{max}) = 5.0 \text{ at } 28.3^{\circ}.$
3509 <i>15</i>	2	$\sigma(\text{max}) = 7.1 \text{ at } 20.6^{\circ}.$
3648 15		$\sigma(\text{max}) = 5.0 \text{ at } 12.9^{\circ}.$
3675 [‡] <i>15</i>	_	$\sigma(\text{max})=5.0 \text{ at } 5.1^{\circ}.$
3794 <i>15</i>	3	$\sigma(\max)=3.5 \text{ at } 28.3^{\circ}.$
3819 20	0	$\sigma(\text{max})=1.9 \text{ at } 5.1^{\circ}.$
3897 15	0	$\sigma(\text{max})=6.0 \text{ at } 5.1^{\circ}.$
3916 [‡] 20		$\sigma(\text{max}) = 0.4 \text{ at } 43.6^{\circ}.$
4014 15		$\sigma(\max) = 4.8 \text{ at } 5.1^{\circ}.$
4112 <i>15</i> 4175 <i>15</i>		$\sigma(\text{max})=3.0 \text{ at } 20.6^{\circ}.$ $\sigma(\text{max})=7.6 \text{ at } 20.6^{\circ}.$
4247 [‡] 20	@	$\sigma(\text{max}) = 0.9 \text{ at } 36.0^{\circ}.$
4284 15	w	$\sigma(\text{max})=2.6 \text{ at } 5.1^{\circ}.$
4349 15		$\sigma(\text{max}) = 4.2 \text{ at } 20.6^{\circ}.$
4445 15		$\sigma(\text{max}) = 5.8 \text{ at } 28.3^{\circ}.$
4631 <i>15</i> 4678 <i>15</i>		$\sigma(\text{max})=2.8 \text{ at } 12.9^{\circ}.$ $\sigma(\text{max})=3.2 \text{ at } 12.9^{\circ}.$
4800 [‡] 20	@	$\sigma(\text{max})=1.4 \text{ at } 20.6^{\circ}.$
4848 20	@	$\sigma(\text{max})=1.8 \text{ at } 5.1^{\circ}.$
4892 20		$\sigma(\text{max}) = 4.0 \text{ for } 4892 + 4924 \text{ at } 12.9^{\circ}.$
4924 20	<u>@</u>	$\sigma(\text{max})=4.0 \text{ for } 4924+4892 \text{ at } 12.9^{\circ}.$
4989 <i>15</i>		$\sigma(\text{max})=1.8 \text{ at } 5.1^{\circ}.$
5121 <i>15</i>	(3)	$\sigma(\text{max}) = 6.3 \text{ at } 28.3^{\circ}.$

[†] Average of values measured at eight angles between 5° and 57.5°. According to 1968Ch20, uncertainties are 15 keV for strongly populated levels, and 20 keV for weaker ones. Evaluator assigns 15 keV for σ >2, and 20 keV for σ ≤2 or for unresolved levels.

54 Cr(t,p) 1968Ch20 (continued)

⁵⁶Cr Levels (continued)

[®] Possible L=1 state (1968Ch20) from σ (q) distribution showing a trend between those assigned as L=0 and L=2. However, authors did did not assign L=1 as no known L=1 states for comparison purpose were available.