238 U(48 Ca,X γ) 2006Zh42

History										
Туре	Author	Citation	Literature Cutoff Date							
Full Evaluation	Balraj Singh	ENSDF	25-Mar-2022							

Includes reactions: 208 Pb(48 Ca,X γ) and 14 C(48 Ca, α 2n γ).

2006Zh42: three experiments were carried out at ATLAS-ANL facility:

1. 238 U(48 Ca,X γ),E(48 Ca)=330 pulsed beam. Measured E γ , I γ , $\gamma\gamma$ -coin, $\gamma\gamma(\theta)$ (DCO) using Gammasphere array with 101 Compton-suppressed HPGe detectors. Prompt and delayed (\approx 40 ns to \approx 350 ns after the beam pulse) spectra recorded, the latter allowed for identification of isomers and β decay related events. These were of the highest statistics among the three experiments, thus used in most analyses.

2. 208 Pb(48 Ca,X γ),E(48 Ca)=305 MeV. Measured E γ , I γ , $\gamma\gamma$ -coin using Gammasphere array with 100 Compton-suppressed HPGe detectors.

3. ${}^{14}C({}^{48}Ca,\alpha 2n\gamma),E({}^{48}Ca)=130$ MeV. Enriched, 90% ${}^{14}C$ target. Reaction products were analyzed by Argonne Fragment Mass Analyzer (FMA). Parallel-grid avalanche counter (PGAC) was used to detect recoils and Gammasphere array with 100 Compton-suppressed HPGe detectors was used to detect γ rays. Measured E γ , I γ , $\gamma\gamma$ -coin, $\gamma(\theta)$.

Comparisons with theoretical calculations using shell-model with GXPF1A interaction, and with total Routhian surfaces (TRS).

⁵⁶Cr Levels

E(level) [†]	J ^π ‡	Comments
0.0#	0+	
1006.90 [#] 10	2^{+}	
1831.75 14	2^{+}	
2076.89 [#] 14	4+	
2278.58 18	3+	
2688.00 20	4+	
2823.01 18	4+	738 48
3116.8 6		E(level): from 236 U(46 Ca,X γ) only.
3251.93" 17	6^+	
3528.56 22	5'	
3841.20 <i>19</i> 4157 61 20	(6.7)	
4137.01 20 4448 05 [@] 10	(0,7)	
4732 53 22	(67)	
$4751 \ 11^{\#} \ 19$	(0,7) 8+	
5268.8 3	8	
$5601.67^{@}.20$	9-	
6295.5 8	(9)	
6518.4 [#] 5	10^{+}	
6873.05 22		
6879.2 <i>3</i>		
7057.39 [@] 22	11-	
7692.1? <i>3</i>		
8465.7 [#] 17	(12^{+})	
8768.3 [@] 3	13-	
10850.3 [@] 5	(15 ⁻)	
13159.7 [@] 11	(17^{-})	

[†] From least-squares fit to $E\gamma$ data. Uncertainties of 534.9 γ , 606.5 γ and 1763.8 γ were doubled to get an acceptable fit. The normalized χ^2 is 3.6 as compared to critical χ^2 =2.3 using uncertainties as listed by 2006Zh42.

[±] As assigned in 2006Zh42, based on multipolarities implied from their $\gamma(\theta)$ and $\gamma\gamma(\theta)$ (DCO) data, and band associations.

²³⁸U(⁴⁸Ca,Xγ) 2006Zh42 (continued)

⁵⁶Cr Levels (continued)

Band(A): g.s. band.

[@] Band(B): Band based on 7⁻, 4448.0.

$\gamma(^{56}Cr)$

DCO values correspond to angles of 90° and 180° (or 0°) gated on $\Delta J=2$, quadrupole transitions, measured in ²³⁸U(⁴⁸Ca,X γ) reaction. Expected DCO values of ≈ 1.0 for $\Delta J-2$, quadrupole and ≈ 0.5 -0.6 for $\Delta J=1$, dipole transitions.

Eγ	I_{γ}^{\dagger}	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^π	Mult. [#]	δ	Comments
222.9 10	0.16 3	6518.4	10+	6295.5	(9)			
332.7 2	0.46 4	5601.67	9-	5268.8	8	D		A ₂ =-0.266 81; DCO=0.6 5
409.4 1	2.44 10	2688.00	4+	2278.58	3+	D		A ₂ =-0.365 61; DCO=0.9 4
446.8 <i>1</i>	4.94 20	2278.58	3+	1831.75	2+	D		A ₂ =-0.231 45; DCO=0.7 2
534.9 [‡] 4	0.62 5	5268.8	8	4732.53	(6,7)			
574.9 <i>1</i>	2.92 13	4732.53	(6,7)	4157.61	(6,7)			A ₂ =+0.133 55; A ₄ =-0.781 73; DCO=1.0 4
589.2 1	8.3 <i>3</i>	3841.20	6+	3251.93	6+	D+Q	≈+1.2	$A_2 = -0.029 \ 38; A_4 = -0.273 \ 51; DCO = 1.1 \ 3$
								Mult.: $\Delta J=0$ transition.
606.5 [‡] 1	6.90 24	4448.05	7-	3841.20	6+	D		A ₂ =-0.566 44; DCO=0.6 2
629.0 <i>1</i>	0.15 4	4157.61	(6,7)	3528.56	5+			
704.0 10	1.31 9	3528.56	5+	2823.01	4+	D		A ₂ =-0.490 96; DCO=0.5 3
746.1 <i>1</i>	3.17 19	2823.01	4+	2076.89	4+	D		A ₂ =+0.221 73; A ₄ =+0.034 98; DCO=0.5 2
-								Mult.: $\Delta J=0$ transition.
812.9 [@] 1	0.68 7	7692.1?		6879.2				
824.8 1	8.1 4	1831.75	2^{+}	1006.90	2^{+}	D+Q		DCO=0.8 3
839.0 10	0.73 5	3528.56	5+	2688.00	4+	D		DCO=0.3 3
850.6 1	4.85 19	5601.67	9-	4751.11	8+	D		DCO=0.6 2
905.7 1	3.78 19	4157.61	(6,7)	3251.93	6+			
1006.9 <i>1</i>	100.0 3	1006.90	2+	0.0	0^{+}	Q		$A_2 = +0.102 \ 15; \ A_4 = -0.067 \ 19$
1039.9 5	5.4 5	3116.8		2076.89	4+			
1070.0 1	92.0 <i>3</i>	2076.89	4+	1006.90	2+	Q		$A_2 = +0.159 \ 15; A_4 = -0.080 \ 20; DCO = 1.1 \ 1$
1153.6 <i>1</i>	16.4 5	5601.67	9-	4448.05	7-	Q		$A_2 = +0.271 \ 29; A_4 = -0.226 \ 41; DCO = 1.5 \ 3$
1175.1 1	64.5 20	3251.93	6+	2076.89	4+	Q		$A_2 = +0.237 I 8; A_4 = -0.138 23; DCO = 1.1 I$
1196.2 1	21.3 7	4448.05	7-	3251.93	6+	D		$A_2 = -0.287\ 26;\ DCO = 0.5\ I$
1205.5 ^{⁽⁰⁾} 10	0.62 8	4732.53	(6,7)	3528.56	5+			
1248.4 10	0.58 7	3528.56	5+	2278.58	3+			
1277.5 2	2.62 14	6879.2		5601.67	9-			
1426.9 6	1.00 11	5268.8	8	3841.20	6+			DCO=0.8 6
1455.7 <i>1</i>	10.0 4	7057.39	11-	5601.67	9-	Q		$A_2 = +0.323 \ 40; \ A_4 = -0.133 \ 53; \ DCO = 1.3 \ 3$
1499.2 <i>1</i>	17.4 6	4751.11	8+	3251.93	6+	Q		$A_2 = +0.280 \ 35; A_4 = -0.122 \ 47; DCO = 1.2 \ 3$
1544.3 10	0.50 12	6295.5	(9)	4751.11	8+	(0)		
1710.9 2	3.26 16	8768.3	13-	7057.39	11-	(Q)		$A_2 = +0.402\ 79;\ A_4 = -0.004\ 109$
1763.8 4	6.5 3	3841.20	6+	2076.89	4+	Q		$A_2 = +0.168\ 44;\ A_4 = -0.076\ 58$
1767.3 2	2.67 21	6518.4	10+	4751.11	8+	Q		$A_2 = +0.168 \ 44; \ A_4 = -0.076 \ 58$
1947.2 16	0.58 12	8465.7	(12^{+})	6518.4	10^{+}			
2081.9 3	0.70 12	10850.3	(15 ⁻)	8768.3	13-			
2121.9 <i>I</i>	1.05 15	6873.05		4751.11	8+			
2309.4 10	0.22 12	13159.7	(17^{-})	10850.3	(15^{-})			

[†] From ²³⁸U(⁴⁸Ca,X γ) reaction.

[‡] Uncertainty doubled for fitting purpose.

[#] Assigned by evaluator based on $\gamma(\theta)$ and $\gamma\gamma(\theta)$ (DCO) data in 2006Zh42.

[@] Placement of transition in the level scheme is uncertain.

 $^{56}_{24}{\rm Cr}_{32}$

²³⁸U(⁴⁸Ca,Xγ) 2006Zh42

