⁵⁵Ti β^- decay (1.3 s) 2003Ma56

	History					
Туре	Author	Citation	Literature Cutoff Date			
Full Evaluation	Balraj Singh	ENSDF	30-Apr-2022			

Parent: ⁵⁵Ti: E=0.0; $J^{\pi}=(1/2)^{-}$; $T_{1/2}=1.3$ s *1*; $Q(\beta^{-})=7290$ 40; $\%\beta^{-}$ decay=100.0 ⁵⁵Ti-J^{π},T_{1/2}: From ⁵⁵Ti Adopted Levels, where T_{1/2} is adopted from 2003Ma56.

⁵⁵Ti-Q(β^{-}): From 2021Wa16.

2003Ma56: measured E γ , I γ , $\gamma\gamma$ -coin, $\beta\gamma$ -coin, half-life using an array of six segmented Ge detectors. ⁵⁵Ti produced in fragmentation of 140-MeV ⁸⁶Kr³⁴⁺ beam incident on a ⁹Be target at NSCL-MSU. The secondary fragments were selected in the A1900 fragment recoil-separator, and implanted in a double-sided Si microstrip detector to detect β particles from decay of fragments. Comparison with shell-model calculations.

1996Do23: ⁵⁵Ti produced and identified in ⁹Be(⁶⁵Cu,X), E=64.5 MeV/nucleon reaction using LISE3 separator at GANIL facility. Measured γ spectrum, (implants) β and (implants) $\beta\gamma$ -correlated events from which half-life of ⁵⁵Ti decay was extracted. Two γ rays of 0.3 MeV and 0.7 MeV, of almost equal intensity were measured using BGO detector. Deduced g.s. to g.s. β feeding.

⁵⁵V Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} ‡
0.0	$(7/2^{-})$	6.54 s 15
323.3 4	$(5/2^{-})$	
672.6 4	$(3/2^{-})$	
1330.1 5		
1500.9 6		
2152.8 6		

[†] From least-squares fit to $E\gamma$ data.

[‡] From the Adopted Levels.

β^{-} radiations

E(decay)	E(level)	Ιβ ^{-†#}	$\log ft^{\ddagger}$	Comments
$(5.14 \times 10^3 4)$	2152.8	16 2	4.9	av E β =2330 20
$(5.79 \times 10^3 4)$	1500.9	53	5.6	av E β =2649 20
$(5.96 \times 10^3 4)$	1330.1	12 2	5.3	av E β =2732 20
$(6.62 \times 10^3 4)$	672.6	31 5	5.1	av E β =3054 20
(6.97×10 ³ [@] 4)	323.3	12 3	5.6	av E β =3225 20 I β^- : no feeding is expected for ΔJ =2, $\Delta \pi$ =no. Apparent feeding of 12% 3 in 2003Ma56 may be from unobserved γ rays from higher levels.
(7.29×10 ³ [@] 4)	0.0			av E β =3383 20 I β^- : 2003Ma56 give I β =24 5, but no feeding is expected from (1/2) ⁻ parent state to (7/2 ⁻) g.s. in ⁵⁵ V. It would seem that this apparent feeding is to higher unobserved levels. Other: 60% (1996Do23, from a comparison of the number of $\beta\gamma$ -coincidences and β singles) would also be for higher levels, not the g.s. of ⁵⁵ V.

[†] From 2003Ma56, deduced from absolute γ -intensity balance for excited states. For the ground state, β feeding is 100–(summed feeding to excited states), but as stated for the g.s. of 55 V, no feeding is expected from $(1/2)^{-}$ parent state of 55 Ti to $(7/2^{-})$ g.s. in ⁵⁵V. All the values should be considered as upper limits due to possible existence of unobserved decays. Note that 1262.5γ with $I\gamma = 5\%$ *l* is unplaced, which may affect β feeding to certain levels.

[‡] Deduced by evaluator. As mentioned by 2003Ma56, values should be considered as lower limits due to possible existence of unobserved decays.

⁵⁵Ti β^- decay (1.3 s) 2003Ma56 (continued)

β^{-} radiations (continued)

Absolute intensity per 100 decays.@ Existence of this branch is questionable.

$\gamma(^{55}V)$

Iγ normalization: γ-ray intensities in 2003Ma56 are per 100 decays, determined from the number of observed ⁵⁵Ti γ rays, the simulated γ-ray efficiency curve, and the number of ⁵⁵Ti implants correlated with β decays.

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger\ddagger}$	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Comments
323.4 4	20 2	323.3	$(5/2^{-})$	0.0 (7/2 ⁻)	E_{γ} : other: 0.3 MeV <i>l</i> (1996Do23).
349.3 6	31	672.6	$(3/2^{-})$	323.3 (5/2-)	
651.6 7	51	2152.8		1500.9	
672.5 4	44 4	672.6	$(3/2^{-})$	$0.0 (7/2^{-})$	E_{γ} : other: 0.7 MeV <i>1</i> (1996Do23).
828.1 5	10 2	1500.9		672.6 (3/2 ⁻)	,
x1262.5 6	51				
1330.1 5	12 2	1330.1		$0.0 (7/2^{-})$	
1480.0 8	61	2152.8		672.6 (3/2 ⁻)	
1830.0 8	51	2152.8		323.3 (5/2 ⁻)	

[†] From 2003Ma56. [‡] Absolute intensity per 100 decays. ^x γ ray not placed in level scheme.

$\frac{55}{10}$ Ti β^- decay (1.3 s) 2003Ma56

Decay Scheme

 ${}^{55}_{23}V_{32}$

3