⁹Be(⁴⁸Ca,pnγ) 2011De20,2007Zh37

History							
Туре	Author	Citation	Literature Cutoff Date				
Full Evaluation	Balraj Singh	ENSDF	30-Apr-2022				

2011De20, 2007Zh37: $E(^{48}Ca)=172$ MeV beam produced by the ATLAS-ANL facility. Target=1.0 mg/cm² thick ⁹Be. Gammasphere array with 101 Compton suppressed HPGe detectors used for prompt γ -rays. Reaction products were identified by the Fragment Mass Analyzer (FMA) by their mass-to-charge ratio, and energy loss. Measured $E\gamma$, $I\gamma$, $\gamma\gamma$ -coin, and $\gamma(\theta)$. Deduced levels and J^{π} . Comparison with shell model calculations.

Other:

2008LuZZ: 238 U(64 Ni,X),E=400 MeV and 238 U(70 Zn,X), E=460 MeV. Measured prompt γ spectra using CLARA-PRISMA set-up at the LNL Tandem-ALPI accelerator complex, where two γ rays were reported in 55 V at 1434 and 1076 keV, first placed from 1434, (11/2⁻) level to the g.s., and the second from 2510, (15/2⁻) level to the 1434 level, in agreement with results from 2007Zh37 and 2011De20.

All data are from 2011De20.

⁵⁵V Levels

E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	$J^{\pi \ddagger}$
0.0#	7/2-	1942.8 4	11/2-	3479.2 6	15/2-	5039.1 10	(19/2 ⁻)
323.8 <i>3</i>	5/2-	2176.40 25	$11/2^{-}$	3826.9 6	$(15/2^{-})$	5170.8 [#] 4	$21/2^{(+)}$
671.90 <i>19</i>	3/2-	2508.11 [#] 14	$15/2^{-}$	4364.6 5	$17/2^{(+)}$	5350.2 6	19/2,21/2 ⁽⁺⁾
1433.10 [#] 10	$11/2^{-}$	2630.2 <i>3</i>	$13/2^{-}$	4421.8 5	$17/2^{-}$	5695.8 [#] 4	$23/2^{(+)}$
1570.0 <i>3</i>	9/2-	2642.7 4	11/2-,13/2-	4695.5 9	19/2-	6620.7 5	$23/2^{(+)}$
1570.4 6	$(3/2^{-})$	2916.4 4	$(13/2^{-})$	4750.2 [#] 4	19/2 ⁽⁺⁾	7012.7 [#] 5	$25/2^{(+)}$
1620.8 4	9/2-	3165.51 [#] 17	15/2-	4855.7 <i>4</i>	19/2-	7466.8 10	$27/2^{(+)}$

[†] From least-squares fit to $E\gamma$ data.

[‡] Assignments from 2011De20, based on $\gamma(\theta)$ measurements, yrast-feeding arguments, and relative γ -ray intensities.

Seq.(A): Yrast sequence.

$\gamma(^{55}\mathrm{V})$

Statistics were insufficient for full angular distributions or correlations to be measured, so R_{ang} is given by the sum of gamma intensities from 79° to 101° divided by the sum from 143° to 163° (2011De20). Expected values of R_{ang} are >1 for pure stretched-dipole transitions, and <1 for stretched-quadrupole transitions.

E_{γ}	I_{γ}	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [†]	Comments
233.8 5	0.50 20	2176.40	$11/2^{-}$	1942.8	11/2-		
248.2 12	0.6 3	3165.51	$15/2^{-}$	2916.4	$(13/2^{-})$		
273.7 1	2.5 3	2916.4	$(13/2^{-})$	2642.7	$11/2^{-}, 13/2^{-}$	D	$R_{ang} = 1.3 2.$
							Mult.: $\Delta J=1$ or 0.
285.1 5	0.5 3	2916.4	$(13/2^{-})$	2630.2	$13/2^{-}$		
315.1 <i>1</i>	3.8 5	5170.8	$21/2^{(+)}$	4855.7	19/2-	D	R _{ang} =1.2 <i>1</i> .
322.0 3	4.5 15	1942.8	$11/2^{-}$	1620.8	9/2-		·· · · ·
323.1 5	19.2 <i>21</i>	323.8	5/2-	0.0	7/2-	D	$R_{ang} = 1.2 \ I.$
343.6 4	1.5 7	5039.1	$(19/2^{-})$	4695.5	19/2-		·· · · ·
345.7 10	4.9 9	5695.8	$23/2^{(+)}$	5350.2	$19/2,21/2^{(+)}$	D	$R_{ang} = 1.5 \ 3.$
347.9 <i>3</i>	1.4 10	671.90	3/2-	323.8	5/2-		8
392.0 1	4.6 5	7012.7	$25/2^{(+)}$	6620.7	$23/2^{(+)}$	D	R _{ang} =1.6 2.
420.6 1	7.2 7	5170.8	$21/2^{(+)}$	4750.2	$19/2^{(+)}$	D	$R_{ang} = 1.6 \ I.$
433.9 5	2.4 9	4855.7	19/2-	4421.8	$17/2^{-}$		

Continued on next page (footnotes at end of table)

⁹ Be(⁴⁸ Ca,pnγ)	2011De20,2007Zh37	(continued)
--	-------------------	-------------

$\gamma(^{55}V)$ (continued)

Eγ	I_{γ}	E _i (level)	J_i^π	E_f	\mathbf{J}_{f}^{π}	Mult. [†]	Comments
453.8 <i>1</i>	8.8 8	2630.2	13/2-	2176.40	11/2-	D	R _{ang} =1.6 <i>1</i> .
454.1 10	0.10 10	7466.8	$27/2^{(+)}$	7012.7	$25/2^{(+)}$	D	D 144
525.0 <i>1</i> 534 <i>4</i>	7.8 8 0.5 3	5695.8 3165.51	$\frac{23}{2^{-1}}$	5170.8 2630.2	$\frac{21}{2^{-1}}$	D	$R_{ang}=1.4 I.$
594.8 5	3.3 8	4421.8	17/2-	3826.9	$(15/2^{-})$	D	R _{ang} =1.7 5.
606.3 2	6.9 8	2176.40	11/2-	1570.0	9/2-	D	R _{ang} =1.7 4.
657 4	1.0 5	5695.8	$23/2^{(+)}$	5039.1	$(19/2^{-})$	[M2]	
657.4 <i>1</i>	24.2 10	3165.51	$15/2^{-}$	2508.11	$15/2^{-}$	D	$R_{ang}=0.79 \ 4 \ M\\Delta J=0$ transition.
672.0 2	11.5 15	671.90	3/2-	0.0	7/2-	(Q)	$R_{ang}=0.9$ 1.
699.9 <i>3</i>	4.5 7	2642.7	11/2 ⁻ ,13/2 ⁻	1942.8	11/2-	D	$R_{ang}=1.4$ 2. Mult.: $\Delta J=1$ or 0.
739.9 7	2.5 12	2916.4	$(13/2^{-})$	2176.40	$11/2^{-}$		
742.9 4	10.7 13	2176.40	$11/2^{-1}$	1433.10	$11/2^{-}$		$R_{ang}=1.1 \ I \ M \Delta J=0$ transition.
748.5 10	8.2 12	5170.8	$21/2^{(+)}$	4421.8	$17/2^{-}$	Q	Mult.: (M2) from ΔJ^{π} .
							R _{ang} =0.76 8.
848.1 11	1.4 9	3479.2	15/2-	2630.2	13/2-		
985.6 <i>3</i>	9.7 11	5350.2	$19/2,21/2^{(+)}$	4364.6	$17/2^{(+)}$	(D,Q)	$R_{ang}=1.2$ 1.
							Mult.: $\gamma(\theta)$ suggests $\Delta J=1$, dipole, $\Delta J=2$, quadrupole also possible from ΔJ^{π} assigned by 2011De20
1075.0 <i>1</i>	54 <i>3</i>	2508.11	$15/2^{-}$	1433.10	$11/2^{-}$	0	E_{γ} : other: 1076 (2008LuZZ).
			- 1		7		$R_{ang} = 0.79 \ 3.$
1199.0 5	12.3 8	4364.6	$17/2^{(+)}$	3165.51	$15/2^{-}$	D	$R_{ang} = 2.2 \ 4.$
1246.6 5	2.0 15	1570.4	$(3/2^{-})$	323.8	$5/2^{-}$	D	$R_{ang} = 2.5 \ 14.$
1270.6 7	3.3 12	4750.2	$19/2^{(+)}$	3479.2	$15/2^{-}$	[M2]	
1316.9 4	11.9 14	7012.7	$25/2^{(+)}$	5695.8	$23/2^{(+)}$	(D)	$R_{ang} = 1.0 \ I.$
1318.3 <i>13</i>	1.0 5	3826.9	$(15/2^{-})$	2508.11	$15/2^{-}$		
1376.9 12	4.7 16	4855.7	19/2-	3479.2	$15/2^{-}$		
1433.1 <i>1</i>	100 6	1433.10	11/2-	0.0	7/2-	Q	E_{γ} : other: 1434 (2008LuZZ). R_{ans} =0.77 5.
1449.8 <i>3</i>	8.9 12	6620.7	$23/2^{(+)}$	5170.8	$21/2^{(+)}$	D	$R_{ang} = 1.3 2.$
1486.4 9	1.2 7	2916.4	$(13/2^{-})$	1433.10	$11/2^{-}$		E_{γ} : poor fit. Level-energy difference=1483.3.
1505.0 7	3.3 8	4421.8	17/2-	2916.4	$(13/2^{-})$	(Q)	$R_{ang} = 1.1 I.$
1560 <i>3</i>	2.8 12	5039.1	$(19/2^{-})$	3479.2	$15/2^{-}$		-
1569.7 4	13.3 21	1570.0	9/2-	0.0	7/2-	D	$R_{ang} = 1.5 2.$
1584.7 5	8.1 8	4750.2	19/2(+)	3165.51	15/2-	(Q)	Mult.: (M2) from ΔJ^{π} . Rang=0.8 3.
1620.8 8	4.5 9	1620.8	9/2-	0.0	$7/2^{-}$	D	$R_{ang} = 1.2 I.$
1690.2 9	7.1 6	4855.7	19/2-	3165.51	$15/2^{-}$	Q	$R_{ang} = 0.6 \ 3.$
1771.0 15	2.3 11	7466.8	$27/2^{(+)}$	5695.8	$23/2^{(+)}$	(Q)	$R_{ang} = 0.9 \ 3.$
1791.7 <i>11</i>	1.1 8	4421.8	17/2-	2630.2	$13/2^{-}$		
1835.4 12	0.5 3	4750.2	$19/2^{(+)}$	2916.4	$(13/2^{-})$	[E3]	
1943.2 7	5.8 11	1942.8	$11/2^{-}$	0.0	$7/2^{-}$	Q	R _{ang} =0.73 5.
2046.2 13	9.9 15	3479.2	15/2-	1433.10	$11/2^{-}$	(Q)	R _{ang} =0.8 2.
2121 3	0.5 3	4750.2	$19/2^{(+)}$	2630.2	$13/2^{-}$	[E3]	
2175.5 10	8.1 23	2176.40	$11/2^{-1}$	0.0	7/2-	(Q)	$R_{ang} = 0.8 2.$
2187.4 10	10.3	4695.5	$19/2^{-}$	2508.11	15/2-	Q	$R_{ang} = 0.5 2.$
2190.4 22 2531.0 24	0.5 <i>3</i> 6 <i>2</i>	4364.6 5039.1	$(17/2^{(+)})$ $(19/2^{-})$	2176.40 2508.11	$11/2^{-1}$ $15/2^{-1}$	[E3]	

[†] Assigned by evaluator based on magnitude of R_{ang} values; $\Delta J=1$, dipole (D) for R_{ang}>1 and $\Delta J=2$, quadrupole (Q) for R_{ang}<1. For $\Delta J=1$, only the dominant dipole multipolarity is assigned, with the understanding that some quadrupole admixture is possible, ⁹Be(⁴⁸Ca,pnγ) 2011De20,2007Zh37 (continued)

$\gamma(^{55}V)$ (continued)

especially in the case of $\Delta J=1$, M1 transitions. High multipolarities (M2 and E3), based on ΔJ^{π} are given in square brackets or in comments.

 ${}^{55}_{23}V_{32}$

⁹Be(⁴⁸Ca,pnγ) 2011De20,2007Zh37

