Adopted Levels, Gammas

History						
Туре	Type Author		Literature Cutoff Date			
Full Evaluation	Balraj Singh	ENSDF	30-Apr-2022			

 $Q(\beta^{-})=7290 \ 40; \ S(n)=4160 \ 30; \ S(p)=14680 \ 30; \ Q(\alpha)=-7925 \ 29$ 2021Wa16

 $S(2n)=11094\ 29,\ S(2p)=27020\ 50,\ Q(\beta^{-}n)=-10\ 30\ (2021Wa16).$

1990Tu01, 1994Se12: mass excess of ⁵⁵Ti measured in Th(p,F),E=800 MeV, followed by separation of fragments by A/Q using the Time-of-Flight Isochronous (TOFI) spectrometer at the Los Alamos Meson Physics Facility. Deduced mass excess=-41.81 MeV 24 (1994Se12) and -41.59 MeV 26 (1990Tu01) for ⁵⁵Ti, in agreement with evaluated mass excess of -41832 keV 29 (2021Wa16).

1996Do23: ⁵⁵Ti produced and identified in ⁹Be(⁶⁵Cu,X), E=64.5 MeV/nucleon reaction using LISE3 separator at GANIL facility.

Measured γ spectrum, (implants) β and (implants) $\beta\gamma$ -correlated events from which half-life of ⁵⁵Ti decay was extracted.

1998Am04: ⁵⁵Ti produced in ⁹Be(⁸⁶Kr,X),E=500 MeV/nucleon reaction using FRS fragment separator at GSI facility. Measured half-life of ⁵⁵Ti decay from (implants)(decay events)-correlated decay curve, with a total of 557 implants of ⁵⁵Ti.

2003Ma56: ⁵⁵Ti produced in fragmentation of 140-MeV ⁸⁶Kr³⁴⁺ beam incident on a ⁹Be target at NSCL-MSU. The secondary fragments were selected in the A1900 fragment separator, and implanted in a double-sided Si microstrip detector to detect β particles from decay of fragments. Measured E γ , I γ , $\gamma\gamma$ -coin, $\beta\gamma$ -coin, half-life of ⁵⁵Ti decay using SeGA array with six segmented Ge detectors.

Mass measurement: 2018Le03.

Theoretical calculations: five primary references (four for structure and one for ⁵⁵Ti decay) retrieved from the NSR database at www.ndc.bnl.gov/nsr/. These are listed in this dataset under 'document' records.

Additional information 1.

⁵⁵Ti Levels

Configurations given in comments are from 2007Zh37 in ${}^{9}Be({}^{48}Ca,2p\gamma)$, based on shell-model calculations.

Cross Reference (XREF) Flags

Α	55 Sc β^{-}	decay	(96	ms)
---	------------------------	-------	-----	-----

- **B** 56 Sc β^{-} n decay (75 ms)
- $C \qquad {}^{9}Be({}^{48}Ca,2p\gamma)$
- **D** ${}^{9}\text{Be}({}^{56}\text{Ti}, {}^{55}\text{Ti}\gamma)$

E(level) [†]	\mathbf{J}^{π}	T _{1/2}	XREF	Comments
0.0	$(1/2)^{-}$	1.3 s <i>1</i>	ABCD	
				$T_{1/2}$: from 2003Ma56 (authors' average of three values: 1.2 s 4 from (fragment) β decay curve, 1.34 s 10 from (fragment) β (323 γ) decay curve, and 1.32 s 10 from (fragment) β (673 γ) decay at NSCL-MSU). Others: 0.32 s 6 (1998Am04, implants- β correlations at GSI); and 0.60 s 4 (1996Do23, 0.62 s 6 from implants- β and 0.58 s 5 from implants- $\beta\gamma$ at GANIL) are in disagreement with that from 2003Ma56, where γ selectivity gives a more reliable value.
				Additional information 2. I_{1}^{T} , $I_{1}(n) = 1$ momentum distribution in ${}^{9}Pa/{}^{56}T;$ 55Tia) from vr_{1} , orbital, and
				$J : L(n)=1$ momentum distribution in Be(~11, ~11 γ) from $\nu p_{1/2}$ orbital, and comparison with shell-model calculations.
				Dominant configuration= $[\pi(f_{7/2}^2)\nu(f_{7/2}^8, p_{3/2}^4)]_{0+} \otimes \nu p_{1/2}^1$ (2007Zh36).
591.7 [#] 3	$(5/2^{-})^{\ddagger}$		ABC	J^{π} : 591.7 γ to (1/2) ⁻ ; 1554 γ from (9/2 ⁻).
				Dominant configuration= $[\pi(f_{7/2}^2) \otimes v(f_{7/2}^8, p_{3/2}^4)]_{0+} \otimes vf_{5/2}^1$ (2007Zh36).
955 6	(3/2)-		D	J ^{π} : L(n)=1 momentum distribution in ⁽⁵⁾ Be ³ (⁵⁶ Ti, ⁵⁵ Ti γ) from ν p _{3/2} orbital, and comparison with shell-model calculations.
				Dominant configuration= $[\pi(f_{7/2}^2) \otimes \nu(f_{7/2}^8, p_{3/2}^4)]_{0+} \otimes \nu p_{3/2}^1$ (2007Zh36).
1795.6 [#] 4	(7/2 ⁻) [‡]		ABC	Dominant configurations of 3p-3h state= $\pi f_{7/2}^2 \otimes \nu (f_{7/2}^8 p_{3/2}^3 p_{1/2}^1 f_{5/2}^1)$ and $\pi f_{7/2}^2 \otimes \nu (f_{7/2}^8 p_{3/2}^4 f_{5/2}^1)$ (2007Zh36).

Continued on next page (footnotes at end of table)

Adopted Levels, Gammas (continued)

⁵⁵Ti Levels (continued)

E(level) [†]	J^{π}	XREF	Comments
2145.7 [#] 4 2507.9 5	$(9/2^{-})^{\ddagger}$ $(5/2^{-},7/2^{-},9/2^{-})$	A C A	Dominant configuration= $\pi f_{7/2}^2 \otimes \nu[(f_{7/2}^8 p_{3/2}^4)_{4+} p_{1/2}^1]$ (2007Zh36). J ^{π} : probable allowed β feeding (log /t=5.2 2) from (7/2 ⁻) parent.
2805.7 [#] 7	(13/2 ⁻) [‡]	С	Dominant configuration= $\pi f_{7/2}^2 \otimes \nu [(f_{7/2}^8 p_{3/2}^4)_{6+} p_{1/2}^1]$ (2007Zh36).
3580.7# 9	$(17/2^{-})^{+}$	C	Dominant configuration= $\pi f_{7/2}^2 \otimes \nu[(f_{7/2}^8 p_{3/2}^4)_{6+} f_{5/2}^1]$ (2007Zh36).
5461.8 [#] 10	(19/2 ⁻) [‡]	С	Dominant configuration= $\pi f_{7/2}^2 \otimes v(f_{7/2}^8 p_{3/2}^3 p_{1/2}^1 f_{5/2}^1)$ (2007Zh36).

[†] From least-squares fit to $E\gamma$ data. [‡] As proposed in ⁹Be(⁴⁸Ca,2p γ) (2007Zh37) based on yrast sequence and assigned configurations.

[#] Seq.(A): Yrast sequence.

	$\gamma(^{55}\text{Ti})$						
E _i (level)	\mathbf{J}_i^π	Eγ	I_{γ}	$E_f \qquad J_f^{\pi}$	Comments		
591.7 955	(5/2 ⁻) (3/2) ⁻	591.7 [‡] 3 955 6	100	$\begin{array}{c c} \hline 0.0 & (1/2)^- \\ \hline 0.0 & (1/2)^- \end{array}$	E_{γ} : other: 592.0 5 in ⁹ Be(⁴⁸ Ca,2pγ). E_{γ} : from ⁹ Be(⁵⁶ Ti, ⁵⁵ Tiγ) (2009Ma16).		
1795.6	$(7/2^{-})$	1203.8 [‡] 3	100	591.7 (5/2-)	E_{γ} : other: 1204.0 5 in ⁹ Be(⁴⁸ Ca,2p γ).		
2145.7	(9/2 ⁻)	349.6 [‡] 7	22 11	1795.6 (7/2 ⁻)	E_{γ} : other: 351.0 5 in ⁹ Be(⁴⁸ Ca,2pγ). I_{γ} : from ⁵⁵ Sc β ⁻ decay.		
		1554.1 [‡] 3	100 11	591.7 (5/2-)	E_{γ} : other: 1555.0 5 in ⁹ Be(⁴⁸ Ca,2pγ). I _γ : from ⁵⁵ Sc β ⁻ decay.		
2507.9	(5/2 ⁻ ,7/2 ⁻ ,9/2 ⁻)	712.3 [‡] 3	100	1795.6 (7/2-)			
2805.7	$(13/2^{-})$	660.0 [†] 5	100	2145.7 (9/2-)			
3580.7	$(17/2^{-})$	775.0 [†] 5	100	2805.7 (13/2-)			
5461.8	(19/2 ⁻)	1881.0 [†] 5	100	3580.7 (17/2 ⁻)			

[†] From ${}^{9}\text{Be}({}^{48}\text{Ca},2p\gamma)$ (2007Zh37). [‡] From ${}^{55}\text{Sc} \beta^-$ decay (2003Ma56).

Adopted Levels, Gammas

Level Scheme

⁵⁵₂₂Ti₃₃

Adopted Levels, Gammas

⁵⁵₂₂Ti₃₃