${}^{56}Sc \beta^{-}n \text{ decay (75 ms)}$ 2010Cr02

History							
Туре	Author	Citation	Literature Cutoff Date				
Full Evaluation	Balraj Singh	ENSDF	30-Apr-2022				

Parent: ⁵⁶Sc: E=0+x; $J^{\pi}=(5^+,6^+)$; $T_{1/2}=75$ ms 6; $Q(\beta^-n)=825\times10^1$ 26; $\%\beta^-n$ decay ≈14.0

⁵⁶Sc-E,J^π: shell-model calculations (2004Li75) predict 6⁺ at 543 keV from π1f_{7/2}⊗ν1f_{5/2} configuration. 2004Li75 (also 2005Ma93) proposed (6⁺,7⁺). However, 2010Cr02 (from the same group as 2004Li75) proposed (5⁺,6⁺) from apparent large (probably allowed) β feeding of 6⁺ state in ⁵⁶Ti, and apparent β feeding of 4⁺ state in ⁵⁶Ti, although, for the latter, there is possibility of missing γ transitions from higher levels feeding the 4⁺ state in ⁵⁶Ti.

⁵⁶Sc-T_{1/2}: from timing of β^- -correlated 691 γ and 1161 γ (2010Cr02). Other: 60 ms 7 (2004Li75, from β^- -correlated γ decay curve). 2010Cr02 AND 2004Li75 are from the same laboratory with some of the same authors.

⁵⁶Sc-Q(β^{-} n): From 2021Wa16.

⁵⁶Sc-%β[−]n decay: Given as %β[−]n≥14 2 in 2010Cr02. Evaluators assign ≈14%.

2010Cr02: measured Eγ, Iγ, γγ, and T_{1/2} of ⁵⁵Sc decay using SeGA array with 16 HPGe detectors and BCS detectors at NSCL-MSU facility. ⁵⁶Sc produced in fragmentation of 130 MeV/nucleon ⁷⁶Ge³⁰⁺ beam from K500 and K1200 cyclotrons with ⁹Be target, followed by separation of fragments using A1900 fragment separator and Time-of-flight technique. Fully stripped secondary fragments were sent to NSCL Beta Counting System (BCS). System of three Si PIN detectors, a double-sided silicon strip detector and six single sided silicon strip detectors, and SeGA array for γ rays.

⁵⁵Ti Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} ‡
0.0	$(1/2)^{-}$	1.3 s <i>1</i>
1795.1 5	$(3/2^{-})$ $(7/2^{-})$	

[†] From $E\gamma$ values.

[‡] From the Adopted Levels.

$\gamma(^{55}\text{Ti})$

I γ normalization: Absolute γ intensities are given in 2010Cr02.

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger\ddagger}$	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	
591.7 <i>3</i>	14 2	591.7	$(5/2^{-})$	0.0	$(1/2)^{-}$	_
1203.4 3	8 1	1795.1	$(7/2^{-})$	591.7	$(5/2^{-})$	

[†] From 2010Cr02.

[‡] For absolute intensity per 100 decays, multiply by ≈ 0.14 .

⁵⁶Sc β^- n decay (75 ms) 2010Cr02

Decay Scheme

