Adopted Levels, Gammas

History						
Туре	Author	Citation	Literature Cutoff Date			
Full Evaluation	Balraj Singh	ENSDF	30-Apr-2022			

 $Q(\beta^{-})=10990\ 70;\ S(n)=4480\ 60;\ S(p)=12970\ 80;\ Q(\alpha)=-10750\ 60$ 2021Wa16 $Q(\beta^{-}n)=6830\ 60,\ S(2n)=8220\ 60,\ S(2p)=33120\ 130\ (2021Wa16).$

1990Tu01: mass excess of ⁵⁵Sc measured in Th(p,F),E=800 MeV, followed by separation of fragments by A/Q using the Time-of-Flight Isochronous (TOFI) spectrometer at the Los Alamos Meson Physics Facility. Deduced mass excess=-28.5 MeV 10 for ⁵⁵Sc (1990Tu01) is within ≈2σ of evaluated mass excess of -30840 keV 60 (2021Wa16). However, in a later work 1994Se12 by the same group as 1990Tu01, and using the same experimental methods, mass excess of ⁵⁵Sc was not reported, which may cast some doubt on the results reported in 1990Tu01.

1998So03: ⁵⁵Sc produced and identified in ${}^{9}Be({}^{65}Cu,X)$, E=64.5 MeV/nucleon reaction using LISE3 separator at GANIL. Measured half-life of ${}^{55}Sc$ decay from (implants)(β decay) correlated events. A total of 42 events were assigned to ${}^{55}Sc$ nuclide.

2004Li75 (also 2002Sh43): ⁵⁵Sc produced in ⁹Be(⁸⁶Kr,X), E=140 MeV/nucleon reaction using A1900 fragment separator at NSCL-MSU. Measured half-life of ⁵⁵Sc decay from (implants)(β decay) correlated events, and identified a 592-keV γ ray from the decay of ⁵⁵Sc.

2008Ma01: ⁵⁵Sc produced in ⁹Be(⁷⁶Ge,X), E=140 MeV/nucleon reaction using A1900 fragment separator at NSCL-MSU. Measured half-life of ⁵⁵Sc decay from (implants)(β decay) correlated events, and identified a 592-keV γ ray from the decay of ⁵⁵Sc.

2010Cr02: ⁵⁵Sc produced in ⁹Be(⁸⁶Kr³⁴⁺,X) fragmentation reaction at E=140 MeV/nucleon, A1900 fragment separator. Measured E γ , I γ , $\gamma\gamma$ -coin, $\beta\gamma$ -coin, half-life of ⁵⁵Sc decay using a double-sided Si microstrip detector (DSSD) and the SeGA array of HPGe detectors, arranged around the β counting system (BCS) and comprised six HPGe detectors.

Mass measurements: 2021Le02, 2020Me06, 2020Mi13, 2015Me08, 2011Es06, 1990Tu01 (from reaction Q value).

Theoretical calculations: six primary references (five for structure and one for ⁵⁵Sc decay) retrieved from the NSR database at www.nndc.bnl.gov/nsr/. These are listed in this dataset under 'document' records.

Additional information 1.

⁵⁵Sc Levels

Cross Reference (XREF) Flags

⁹ Be(⁵⁶ Ti. ⁵⁵ S	(55)	Sc. ⁵⁵ Sc'^	v)
	, ¤		<i>JC</i> , <i>DC</i>	1)

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	XREF	Comments
0 695 <i>5</i>	(7/2 ⁻)	96 ms 2	A	$%\beta^-=100; ~%\beta^-n\approx 17.7$ (2010Cr02) % β^-n in 2010Cr02 is not directly measured, but estimated from missing β-feeding intensity in ⁵⁵ Sc decay, where absolute γ intensities (per 100 decays) were measured. Theoretical T _{1/2} =27.4 ms, $%\beta^-n=15$ (2019Mo01). Theoretical T _{1/2} =88.7 ms, $%\beta^-n=2.8, 2.2$ (2021Mi17). T _{1/2} : from 2010Cr02 (summed γ-decay curve fitted with a single exponential and constant background; earlier measurements from the same lab and by some of the same authors using implants- β correlated decay curves: 115 ms 15 in 2004Li75, 103 ms 7 in 2002Sh43, and 83 ms 3 in 2008Ma01). Other: 120 ms 40 (1998So03, from implants- β correlated events, statistics was weak in this first paper on the identification of ⁵⁵ Sc nuclide, where 42 events were assigned to ⁵⁵ Sc). Evaluator adopts T _{1/2} from 2010Cr02 due to the highest statistics and better selectivity from γ-decay curves. Weighted average of all five values is 93 ms 4 with reduced χ^2 =4.5, higher than critical χ^2 =2.4 at 95% confidence level; NRM weighted averaging gives 95 ms ³ with acceptable reduced χ^2 ; while unweighted average is 103 ms 7, same value suggested in LWM weighted average.
1267 7 1730 20	$(1/2^{-})$ $(7/2^{-})$		A A	

Adopted Levels, Gammas (continued)

⁵⁵Sc Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	XREF	Comments
2786 20 2806 12 3135 20	$(1/2^+) (1/2,3/2,5/2^-) (3/2^+)$	A A A	J^{π} : γ to $(1/2^{-})$.

[†] From ${}^{9}\text{Be}({}^{56}\text{Ti}, {}^{55}\text{Sc}\gamma), ({}^{55}\text{Sc}, {}^{55}\text{Sc}'\gamma).$ [‡] As suggested in ${}^{9}\text{Be}({}^{56}\text{Ti}, {}^{55}\text{Sc}\gamma), ({}^{55}\text{Sc}, {}^{55}\text{Sc}'\gamma)$ (2017St22), based on predictions of detailed calculations using shell-model and valence-space in-medium similarity renormalization group (VS-IM-SRG) method. Exception is J^{π} for the 2806 level, with no corresponding level in theoretical calculations.

 $\gamma(^{55}Sc)$

E _i (level)	J_i^π	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	${ m J}_f^\pi$
695	$(3/2^{-})$	695 5	100	0	$(7/2^{-})$
1267	$(1/2^{-})$	572 4	100	695	$(3/2^{-})$
1730	$(7/2^{-})$	1730 20	100	0	$(7/2^{-})$
2786	$(1/2^+)$	2091 19	100	695	$(3/2^{-})$
2806	$(1/2, 3/2, 5/2^{-})$	1539 <i>10</i>	100	1267	$(1/2^{-})$
3135	$(3/2^+)$	1854 27	100 15	1267	$(1/2^{-})$
		2452 26	70 10	695	$(3/2^{-})$

[†] From ⁹Be(⁵⁶Ti,⁵⁵Scγ),(⁵⁵Sc,⁵⁵Sc'γ).

Adopted Levels, Gammas

Level Scheme

Intensities: Relative photon branching from each level

 ${}^{55}_{21}{
m Sc}_{34}$