⁵⁵Cu ε decay (55.9 ms) 2013Tr09,2022TrZZ

History									
Туре	Author	Citation	Literature Cutoff Date						
Full Evaluation	Balraj Singh	ENSDF	30-Apr-2022						

Parent: ⁵⁵Cu: E=0; $J^{\pi}=(3/2^{-})$; $T_{1/2}=55.9$ ms 18; $Q(\varepsilon)=1370\times10^{1}$ 16; $\%\varepsilon+\%\beta^{+}$ decay=100.0

⁵⁵Cu-J^{π},T_{1/2}: From ⁵⁵Cu Adopted Levels.

⁵⁵Cu-Q(ε): From 2021Wa16.

2013Tr09, 2022TrZZ: ⁵⁵Cu produced in Be(⁵⁸Ni²⁸⁺,p2n), E(⁵⁸Ni)=160 MeV/nucleon particle-transfer reaction, followed by separation using A1900 fragment separator and NSCL Radio Frequency Fragment separation at NSCL-MSU facility. Dominant fragments were ⁵⁴Ni and ⁵⁵Cu. The fragments were stopped in a planar Ge double-sided strip detectors (GeDSSD) surrounded by SeGA array of two rings of eight HPGe detectors each on either side. Measured E γ , I γ , (implants) β correlated events, $\beta\gamma$ -coin, $\gamma\gamma$ -coin, $\beta\gamma\gamma$ -coin, half-life of ⁵⁵Cu g.s. decay. Deduced levels, J^{π} , IAS doublet, beta feedings, log *ft* values, isospin mixing, split isobaric analog state (IAS) in ⁵⁵Ni. Comparison with Shell model calculations using the code COSMO with GXPF1A interaction in the full *fp* shell.

 $S(p)(^{55}Ni)=4614.9 \text{ keV } 7 (2021Wa16)$, thus no delayed protons can be emitted from the IAS doublet identified at 4579+4599. 2013Tr09 state that no protons were detected indicating that delayed proton branch is small. Note that 2007Do17 reported a delayed proton branch of 15.0% 43, which may have belonged to another activity, as these authors obtained $T_{1/2}=27 \text{ ms } 8$, in disagreement with 57 ms 3 from 2013Tr09.

⁵⁵ Ni 1	Levels
--------------------	--------

E(level) [†]	$J^{\pi \ddagger}$	Comments
0.0	7/2-	$T_z = -1/2.$
2085.4 4	3/2-	
2465.5 4	$(3/2^{-})$	J^{π} : 3/2 ⁻ in 2013Tr09.
2586.9 5	$(5/2^{-})$	J^{π} : $(3/2)^{-}$ in 2013Tr09.
2802.0 4	$(1/2^{-})$	J^{π} : $(1/2)^{-}$ in 2013Tr09.
3182.7 4	$(5/2^{-})$	J^{π} : $(5/2)^{-}$ in 2013Tr09.
3214.1 7	$(1/2^{-})$	J^{π} : $(1/2)^{-}$ in 2013Tr09.
3593.7 6	$(5/2^{-})$	J^{π} : $(5/2)^{-}$ in 2013Tr09.
3808.3 8	$(1/2^{-}, 3/2^{-})$	J^{π} : (1/2,3/2) ⁻ in 2013Tr09.
4026.8 6	$(1/2^{-}, 3/2^{-})$	J^{π} : (1/2,3/2) ⁻ in 2013Tr09.
4579.4 5	$(3/2^{-})$	J^{π} : 3/2 ⁻ in 2013Tr09.
4599.3 <i>4</i>	(3/2-)	E(level), J^{π} : proton-bound IAS of 3/2 ⁻ . ⁵⁵ Cu g.s., and mirror state of 4721, 3/2 ⁻ state in ⁵⁵ Co. J^{π} : 3/2 ⁻ in 2013Tr09.
		E(level), J^{π} : proton-bound IAS of $3/2^{-}$. ⁵⁵ Cu g.s., and mirror state of 4748, $3/2^{-}$ state in ⁵⁵ Co.

5075.5 9

[†] From least-squares fit to $E\gamma$ data.

[‡] From Adopted Levels, essentially based on proposed assignments by 2013Tr09 from shell-model calculations and comparison with level structure in mirror nucleus ⁵⁵Co. Evaluators place most assignments in parentheses for which strong arguments are lacking. The log *ft* values are not used here as there may be unbserved states above the 5076 level since the $Q(\varepsilon)$ value is 13.7 MeV.

 ε, β^+ radiations

E(decay)	E(level)	$\mathrm{I}\beta^+$ [†]	$\mathrm{I}\varepsilon^{\dagger}$	Log ft	$\mathrm{I}(\varepsilon + \beta^+)^\dagger$	Comments
(8.62×10 ³ 16)	5075.5	4.0 8	0.0048 10	4.4 1	4.0 8	av E β =3590 79; ε K=0.00108 7; ε L=0.000116 8; ε M+=1.96×10 ⁻⁵ 13
$(9.10 \times 10^3 \ 16)$	4599.3	47.3 8	0.048 3	3.49 5	47.3 8	I(ε+β ⁺): 4 <i>I</i> in 2013Tr09. av Eβ=3825 79; εK=0.00090 6; εL=9.7×10 ⁻⁵ 6; εM+=1.64×10 ⁻⁵ 10 I(ε+β ⁺): 48 8 in 2013Tr09.

Continued on next page (footnotes at end of table)

⁵⁵Cu ε decay (55.9 ms) 2013Tr09,2022TrZZ (continued)

E(decay) E(level) Iε Log ft $I(\varepsilon + \beta^+)$ Comments 3.89 5 (9.12×10³ 16) 4579.4 0.0189 14 18.8 7 av Eβ=3835 79; εK=0.00089 6; εL=9.6×10⁻⁵ 6; 18.8 7 $\varepsilon M + = 1.63 \times 10^{-5} 10$ $I(\varepsilon + \beta^+)$: 19 4 in 2013Tr09. $(9.67 \times 10^3 \ 16)$ 4026.8 4.3 3 0.0036 3 4.67 5 4.3 3 av E β =4108 80; ε K=0.00073 5; ε L=7.9×10⁻⁵ 5; ε M+=1.34×10⁻⁵ 8 I($\varepsilon + \beta^+$): 4.3 5 in 2013Tr09. $(9.89 \times 10^{3} \text{\ddagger} 16)$ 3808.3 < 0.6 < 0.6 av Eβ=4217 80 >5.6 $I(\varepsilon + \beta^+)$: 0.4 *1* in 2013Tr09. Evaluators obtain 0.1 5. $(1.011 \times 10^4 \ 16)$ 5.7 5 0.5 5 av Eβ=4323 80 3593.7 0.5 5 I($\varepsilon + \beta^+$): 1.3 2 in 2013Tr09. $(1.049 \times 10^4 \ 16)$ 0.0015 3 2.3 5 av E β =4511 80; ε K=0.00056 3; ε L=6.1×10⁻⁵ 4; 3214.1 2.3 5 5.1 *1 ε*M+=1.03×10^{−5} 6 I($\varepsilon + \beta^+$): 2.3 4 in 2013Tr09. $(1.052 \times 10^{4}$ 16) 3182.7 < 0.9 >5.5 < 0.9 av Eβ=4526 80 $I(\varepsilon + \beta^+)$: 1.4 2 in 2013Tr09. Evaluators obtain 0.2 7. $(1.090 \times 10^4 \ 16)$ 2802.0 4.5 7 0.0025 4 4.9 1 4.5 7 av E β =4715 80; ε K=0.000496 25; ε L=5.4×10⁻⁵ 3; $\varepsilon M + = 9.0 \times 10^{-6} 5$ $I(\varepsilon + \beta^+)$: 4.6 5 in 2013Tr09. $(1.111 \times 10^4 \ 16)$ av E*B*=4822 80 2586.9 1.6 5 5.4 2 1.6 5 $I(\varepsilon + \beta^+)$: 1.7 2 in 2013Tr09. $(1.123 \times 10^4 \ 16)$ 2465.5 7.5 12 0.0038 6 4.8 1 7.5 12 av Eβ=4882 80; εK=0.000449 22; εL=4.85×10⁻⁵ 24; $\varepsilon M + = 8.2 \times 10^{-6} 4$ I($\varepsilon + \beta^+$): 16 4 in 2013Tr09. $(1.161 \times 10^4 \ 16)$ 0.0030 4 av Eβ=5071 80; εK=0.000403 19; εL=4.35×10⁻⁵ 2085.4 6.69 4.9 1 6.69 20; EM+=7.3×10⁻⁶ 4 I($\varepsilon + \beta^+$): 7 2 in 2013Tr09. $(1.370 \times 10^{4} \ddagger 16)$ 0.0 2.2 11 av E β =6107 80 5.8 2 2.2 11

 ϵ, β^+ radiations (continued)

[†] Absolute intensity per 100 decays.

[‡] Existence of this branch is questionable.

$\gamma(^{55}\text{Ni})$

I γ normalization: Absolute γ -ray intensities (per 100 decays of ⁵⁵Cu) are given in 2022TrZZ, obtained from total number of β -correlated implants and the counts and efficiency of the γ -ray counts. With S(p)(⁵⁵Ni)=4614.9 keV 7, β -delayed proton decay mode of ⁵⁵Cu is possible but no protons were detected by 2013Tr09. Note that 2007Do17 reported a β^+ -delayed proton branch of 15.0% 43, which appears questionable as these authors obtained T_{1/2}=27 ms 8 for ⁵⁵Cu decay in contrast to 57 ms 3 by 2013Tr09 and 55.5 ms 18 by 2020Gi02.

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger \#}$	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Comments
336.7 5	7.7 3	2802.0	$(1/2^{-})$	2465.5	(3/2-)	
379.6 10	2.2 2	2465.5	$(3/2^{-})$	2085.4	3/2-	
716.5 [@] 5	7.9 ^{@‡} 3	2802.0	$(1/2^{-})$	2085.4	3/2-	Total I γ =11.8 <i>3</i> .
716.5 [@] 5	3.9 ^{@‡} 3	3182.7	$(5/2^{-})$	2465.5	$(3/2^{-})$	
748.5 10	2.2 2	3214.1	$(1/2^{-})$	2465.5	$(3/2^{-})$	
771.0 10	2.0 2	4579.4	$(3/2^{-})$	3808.3	$(1/2^{-}, 3/2^{-})$	
985.7 10	2.2 2	4579.4	$(3/2^{-})$	3593.7	$(5/2^{-})$	
1005.8 10	1.7 <i>1</i>	4599.3	(3/2 ⁻)	3593.7	$(5/2^{-})$	

Continued on next page (footnotes at end of table)

⁵⁵ Cu ε decay (55.9 ms)	2013Tr09,2022TrZZ (continued)
------------------------------------	-------------------------------

γ ⁽⁵⁵ Ni) (continued)								
E_{γ}^{\dagger}	$I_{\gamma}^{\dagger \#}$	E _i (level)	\mathbf{J}_i^{π}	E_f	${ m J}_f^\pi$		Comments	
1128.6 [@] 10	1.8 ^{@‡} 3	3214.1	(1/2 ⁻)	2085.4	3/2-	Total I γ =3.2 <i>3</i> .		
1128.6 [@] 10	1.4 ^{@‡} 3	3593.7	$(5/2^{-})$	2465.5	(3/2 ⁻)			
1267 ^{&} 2	0.6 1	5075.5		3808.3	$(1/2^-, 3/2^-)$			
1342.6 10	2.5 2	3808.3	$(1/2^{-}, 3/2^{-})$	2465.5	$(3/2^{-})$			
1385.1 10	1.7 2	4599.3	$(3/2^{-})$	3214.1	$(1/2^{-})$			
1396.3 5	3.9 <i>3</i>	4579.4	$(3/2^{-})$	3182.7	$(5/2^{-})$			
1416.3 5	6.1 <i>3</i>	4599.3	$(3/2^{-})$	3182.7	$(5/2^{-})$			
1561.3 5	4.3 <i>3</i>	4026.8	$(1/2^{-}, 3/2^{-})$	2465.5	$(3/2^{-})$			
1777.8 5	6.8 4	4579.4	$(3/2^{-})$	2802.0	$(1/2^{-})$			
1797.0 5	4.3 <i>3</i>	4599.3	$(3/2^{-})$	2802.0	$(1/2^{-})$			
1992.5 10	3.9 <i>3</i>	4579.4	$(3/2^{-})$	2586.9	$(5/2^{-})$			
2085.6 5	23.2 4	2085.4	$3/2^{-}$	0.0	7/2-			
2133.9 5	29.4 5	4599.3	$(3/2^{-})$	2465.5	$(3/2^{-})$			
2465.3 5	59.8 7	2465.5	$(3/2^{-})$	0.0	7/2-			
2514.3 5	4.1 <i>3</i>	4599.3	$(3/2^{-})$	2085.4	3/2-			
2586.9 5	5.5 4	2586.9	$(5/2^{-})$	0.0	7/2-			
2610 <i>I</i>	3.1 3	5075.5		2465.5	(3/2 ⁻)			
2990 <mark>&</mark> 2	0.9 2	5075.5		2085.4	3/2-			
3182.5 5	6.3 4	3182.7	$(5/2^{-})$	0.0	7/2-			
3593.5 10	3.0 3	3593.7	(5/2 ⁻)	0.0	7/2-			

 † From 2022TrZZ. Uncertainties for intensities are statistical only.

[‡] Intensity split is based on $\gamma\gamma$ -coin data as state by 2022TrZZ. [#] Absolute intensity per 100 decays. [@] Multiply placed with intensity suitably divided.

[&] Placement of transition in the level scheme is uncertain.

⁵⁵₂₈Ni₂₇-4

⁵⁵Cu ε decay (55.9 ms) 2013Tr09,2022TrZZ

