Adopted Levels, Gammas

History							
Туре	Author	Citation	Literature Cutoff Date				
Full Evaluation	Balraj Singh	ENSDF	30-Apr-2022				

 $Q(\beta^{-}) = -1.370 \times 10^{4} \ 16$; $S(n) = 14129 \ 5$; $S(p) = 4614.9 \ 7$; $Q(\alpha) = -7571.7 \ 16 \ 2021Wa16$

Q(\varepsilon)=8694.0 6, Q(\varepsilon p)=3629.7 6, S(2n)=31848 25, S(2p)=8966.4 18 (2021Wa16).

1973Di11: search for ⁵⁵Ni in ⁵⁹Co(p,5n γ),⁵⁸Ni(p,p3n γ),E=65 MeV reactions, but no activity could be assigned to ⁵⁵Ni from γ -ray measurements.

1977Ho25: ⁵⁵Ni produced in ⁵⁴Fe(³He,2n),E=12.79-15.34 MeV from the EN Tandem Van de Graaff generator of Aarhus University. Measured positron spectrum from the decay of ⁵⁵Ni using a scintillation spectrometer. Measured half-life of the decay of ⁵⁵Ni from positron decay curve. No γ transitions from the decay of ⁵⁵Ni to ⁵⁵Co were observed using a Ge(Li) detector. Production: 1994B110 (1994B1ZW).

Mass measurements: 2011Tu09, 2010Ka26, 2005Gu36 (analysis).

Theoretical calculations: 33 primary references (32 for structure and one for ⁵⁵Ni decay) retrieved from the NSR database at

www.nndc.bnl.gov/nsr/. These are listed in this dataset under 'document' records.

Additional information 1.

⁵⁵Ni Levels

Cross Reference (XREF) Flags

			A B C D	⁵⁵ Cu ε decay (55.9 ms) ⁵⁶ Zn εp decay (32.9 ms) ¹ H(55 Co,N) ¹ H(56 Ni,D)	E F G H	⁹ Be(⁵⁶ Ni, ⁵⁵ Niγ) ²⁸ Si(³⁶ Ar,2αηγ) ⁵⁸ Ni(³ He, ⁶ He) Coulomb excitation
E(level) [†]	\mathbf{J}^{π}	T _{1/2}	XREF			Comments
0.0‡	7/2-	203.7 ms 20	ABCDEFC	GH %ε+%β ⁺ =100 μ=(-)0.976 26 (2009H T _{1/2} : weighted averag (⁵⁵ Ni implants)β co LISE3 at GANIL); curve at GANIL); LISOL facility at L 208 ms 5 (1984Ay0 189 ms 5 (1977Ho2 (1976EdZX). In this adjusted upwards: 5 1976EdZX. Weighted but reduced χ^2 is 3. level. Weighted average Louvain-la-Neuve, y Additional information J ^π : log ft=3.625 5 for present evaluation; 1 agreement with shel analogy to 7/2 ⁻ , g.s. μ: β-NMR method, ne configuration=vf _{7/2} .	Be22,2 Be22,2 If the point of the point o	2019StZV) Rajeval technique (RT) of 203 ms 2 (2017Ku12, from ed decay curve, with total implants of 2.70×10^6 using as 5 (2002Lo13,2002B117, implants) β correlated decay is 3 (1999Re06,1997Wo06, β decay curve using n-la-Neuve); 212.1 ms 38 (1988HaZD,1988HaZB)); (SOL at the University of Jyvaskyla cyclotron facility); decay curve, at Aarhus University); 219 ms 6 nod, uncertainties for the following values were in 1988HaZD, 9.4 ms in 1977Ho25, and 9.7 ms in trage (and LWM weighted average) is 203.9 ms 26, compared to critical χ^2 of 2.1 at 95% confidence by NRM is 204.3 ms 24 with reduced χ^2 =3.1. 4.4 ms 38. Others: 155 ms 10 (1994Ve09, at is discrepant); <5 s (1973Di11).
2085.4 <i>4</i> 2465.5 <i>4</i> 2587 <i>1</i> 2802.0 <i>4</i>	3/2 ⁻ (3/2 ⁻) (5/2 ⁻) (1/2 ⁻)		A DE C A E C A E A	J^{π} : L(n)=1 in ^{1H} (⁵⁶ Ni	,d); γ	to 7/2 ⁻ .

Adopted Levels, Gammas (continued)

⁵⁵Ni Levels (continued)

E(level) [†]	\mathbf{J}^{π}	XREF	Comments
2842 8		EG	E(level): 2839 5 in ⁵⁸ Ni(³ H, ⁶ He).
2882.1 [‡] 20	(11/2)-	EFGH	J^{π} : level is Coulomb excited from $7/2^{-}$ g.s. B(E2) $\uparrow=0.0251$ 69 for $J^{\pi}(2879)=11/2^{-}$ from Coulomb excitation.
3182.7 4	(5/2-)	Α	E(level): 3186 and 3183 seem to be different levels from two different J^{π} values.
3186 4	1/2+	DE G	E(level): 3186 and 3183 seem to be different levels from two different J^{π} values. J ^{π} : L(n)=0 in ^{1H} (⁵⁶ Ni,d).
3214.1 7 3502 <i>15</i>	(1/2 ⁻)	A E G	
3583.1 [‡] 23	$(13/2^{-})$	BC F	XREF: C(?)F(?).
3593.7 6	$(5/2^{-})$	A G	
3617.1 [‡] 23	$(15/2^{-})$	F	
3759 4	$(3/2)^+$	DE G	XREF: D(?).
			J^{π} : L(n)=2 in ⁹ Be(⁵⁶ Ni, ⁵⁵ Ni); $\sigma(\theta)$ in (³ He, ⁶ He).
3784 15		G	
3808.3 8	$(1/2^-, 3/2^-)$	Α	
4026.8 6	$(1/2, 3/2^{-})$	Α	
4046 9		G	
4444 10		G	E(level): possible doublet.
4483.1? [‡] 25	$(17/2^{-})$	F	
4579.4 5	(3/2 ⁻)	Α	J^{π} : interpreted by 2013Tr09 as split IAS of $(3/2^{-})$ g.s. of ⁵⁵ Cu, the other at 4599 keV, and also interpreted as mirror state of 4721, $3/2^{-}$ state in ⁵⁵ Co.
4599.3 4	(3/2 ⁻)	Α	J ^{π} : interpreted by 2013Tr09 as split IAS of (3/2 ⁻) g.s. of ⁵⁵ Cu, the other at 4579 keV, and also interpreted as mirror state of 4748, 3/2 ⁻ state in ⁵⁵ Co.
4616 11		G	
4743 12		G	
4983 11		G	
5075.5 9	(1/2, 3/2, 5/2)	Α	J ^{π} : possible β^+ feeding from (3/2 ⁻) parent; γ to (3/2 ⁻).
5178 11		G	
5389 12		G	
5876 <i>13</i>		G	
5937 <i>13</i>		G	
6600 50		G	
6870 <i>50</i>		G	

[†] From least-squares fit to $E\gamma$ data for levels populated in γ -ray studies, assuming 1 keV uncertainty when not given. For levels populated in reaction studies with no γ rays, values are from ⁵⁸Ni(³H,⁶He). [‡] Seq.(A): Yrast sequence.

a (55	N	(i)
X	TA	1)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}	\mathbf{E}_{f}	\mathbf{J}_f^π
2085.4	3/2-	2085.6 5	100	0.0	7/2-
2465.5	$(3/2^{-})$	379.6 1	0 3.7 4	2085.4	3/2-
		2465.3 5	100.0 12	0.0	$7/2^{-}$
2587	$(5/2^{-})$	2586.9 5	100	0.0	$7/2^{-}$
2802.0	$(1/2^{-})$	336.7 5	97 4	2465.5	$(3/2^{-})$
		716.5 5	100 4	2085.4	$3/2^{-}$
2842		2842 [‡] 8		0.0	$7/2^{-}$
2882.1	$(11/2)^{-}$	2882 [#] 2		0.0	$7/2^{-}$
3182.7	$(5/2^{-})$	716.5 5	62 5	2465.5	$(3/2^{-})$

Continued on next page (footnotes at end of table)

Adopted Levels, Gammas (continued)

E _i (level)	J_i^π	E_{γ}^{\dagger}	I_{γ}	E_f	\mathbf{J}_f^π
3182.7	(5/2 ⁻)	3182.5 5	100 6	0.0	7/2-
3186	$1/2^{+}$	720 [‡] 4		2465.5	(3/2 ⁻)
		1099 [‡] 4		2085.4	3/2-
3214.1	$(1/2^{-})$	748.5 10	100 9	2465.5	$(3/2^{-})$
		1128.6 10	82 14	2085.4	3/2-
3583.1	$(13/2^{-})$	701 [#] 1		2882.1	$(11/2)^{-}$
3593.7	$(5/2^{-})$	1128.6 <i>1</i>	0 47 10	2465.5	$(3/2^{-})$
		3593.5 <i>1</i>	0 100 10	0.0	7/2-
3617.1	$(15/2^{-})$	735 [#] 1		2882.1	$(11/2)^{-}$
3759	$(3/2)^+$	1293 [‡] 4		2465.5	$(3/2^{-})$
3808.3	$(1/2^-, 3/2^-)$	1342.6 10	100	2465.5	$(3/2^{-})$
4026.8	$(1/2, 3/2^{-})$	1561.3 5	100	2465.5	$(3/2^{-})$
4483.1?	$(17/2^{-})$	866 ^{#@} 1		3617.1	$(15/2^{-})$
4579.4	$(3/2^{-})$	771.0 <i>1</i>	0 29 3	3808.3	$(1/2^-, 3/2^-)$
		985.7 1	0 32 3	3593.7	$(5/2^{-})$
		1396.3 5	57 5	3182.7	$(5/2^{-})$
		1777.8 5	100 6	2802.0	$(1/2^{-})$
4500.2	$(2/2^{-})$	1992.5 1	05/5	2587	(5/2)
4599.3	(3/2)	1005.8 1	05.84	3593.7	(5/2)
		1305.1 1	0.3.87 20.7.10	3182.7	(1/2) $(5/2^{-})$
		1797 0 5	14 6 10	2802.0	$(1/2^{-})$
		2133.9.5	100.0 17	2465.5	$(3/2^{-})$
		2514.3 5	13.9 8	2085.4	3/2-
5075.5	(1/2, 3/2, 5/2)	1267 [@] 2	19.3	3808.3	$(1/2^{-},3/2^{-})$
	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	2610 1	100 10	2465.5	$(3/2^{-})$
		2990 [@] 2	29 7	2085.4	3/2-

γ (⁵⁵Ni) (continued)

[†] From ⁵⁵Cu ε decay, unless specified otherwise. [‡] From ⁹Be(⁵⁶Ni,X γ). [#] From ²⁸Si(³⁶Ar,2 α n γ). [@] Placement of transition in the level scheme is uncertain.

Adopted Levels, Gammas

Legend

Level Scheme

Intensities: Relative photon branching from each level

 $--- \rightarrow \gamma$ Decay (Uncertain)

 $^{55}_{28}\rm{Ni}_{27}$

Adopted Levels, Gammas

 $^{55}_{28}\rm{Ni}_{27}$