⁵⁶Zn εp decay (32.9 ms) 2014Or04,2016Or03

History							
Туре	Author	Citation	Literature Cutoff Date				
Full Evaluation	Balraj Singh	ENSDF	30-Apr-2022				

Parent: ⁵⁶Zn: E=0.0; $J^{\pi}=0^+$; $T_{1/2}=32.9$ ms 8; $Q(\varepsilon p)=12660$ SY; % εp decay=88.0 26 ⁵⁶Zn-T=2; $T_{7}=-2$.

⁵⁶Zn-T_{1/2}: From proton-decay curve correlated with ⁵⁶Zn implants (2014Or04). Other: 27 ms 8 from 1834.5 γ decay curve (2014Or04).

⁵⁶Zn-Q(*ε*p): 12660 400 (syst, 2021Wa16).

⁵⁶Zn-%εp decay: Weighted average of %β⁺p=88.5 26 (2014Or04, from number of implantation of ⁵⁶Zn and proton intensities); 86 5 (2007Do17). Missing 11.5% 26 branching is attributed by 2014Or04 to γ decay from 1691 level in ⁵⁶Cu in analogy with decay of a level in mirror nucleus ⁵⁶Co.

2016Or03, 2014Or04 (also 2016Ru04, 2015Or02, 2014Or03, 2014Ru08 conference reports): 56 Zn produced in fragmentation of 74.5 MeV/nucleon 58 Ni beam on a 200 μ m thick natural Ni target using LISE3 separator at GANIL. Selected fragments were implanted into a double-sided silicon strip detector (DSSSD), surrounded by four EXOGAM Ge clovers for γ ray detection. An implantation was recorded by simultaneous signals in both the ΔE and DSSSD detectors and identified by combining energy loss ΔE and time-of-flight. Measured E(p), I(p), half-life of 56 Zn decay, proton decay branch. FWHM=70 keV for protons. A total of 8900, 56 Zn nuclei was implanted. Three γ -proton sequences were observed for the first time in *fp* shell.

From IMME analysis for T=2 multiplet using mass excess of ⁵⁶Fe, and those for the IAS in ⁵⁶Ni, ⁵⁶Co and ⁵⁶Cu, the last determined from the present work, 2014Or04 and 2016Or03 conclude that IMME deduced mass excess of ⁵⁶Zn=-25911 20 agrees better with -25730 260 in 2003Au03 than with -25580 500 from 2012Wa38. For this reason 2016Or03 use Q(ε) and S(p)(⁵⁶Cu) value from 2003Au03. In 2021Wa16, mass excess of ⁵⁶Zn is -25390 400, even lower than that in 2012Wa38. Additional information 1.

2007Do17: ⁵⁶Zn produced in fragmentation reaction at SISSE/LISE3 facility in GANIL. Primary beam: ⁵⁸Ni²⁶⁺ at 74.5 MeV/nucleon; target=natural Ni. Fragment separator= α -LISE3. Fragment identification by energy loss, residual energy and time-of-flight measurements using two micro-channel plate (MCP) detectors and Si detectors. Double-sided silicon-strip detectors (DSSSD) and a thick Si(Li) detector were used to detect implanted events, charged particles and β particles. The γ rays were detected by four Ge detectors. Coincidences measured between charged particles and γ rays. T_{1/2} measured by time correlation of implantation events due to ⁵⁶Zn and subsequent emission of protons and γ rays. Total proton branching ratio is from time spectrum of events with energy >900 keV in the charged-particle spectrum.

2016Sm01: analysis of ⁵⁶Zn *ep* decay. Discussed IAS in ⁵⁶Cu.

⁵⁵Ni Levels

E(level)	Comments				
0.0	$T_z = -1/2.$				
				Delayed Protons (⁵⁵ Ni)	
E(p) [†]	E(⁵⁵ Ni)	I(p) [#]	$E(^{56}Cu)^{\ddagger}$	Comments	
831 10	0.0	3.0 4	1414		
1131 10	0.0	23.8 11	1714	Other: E(p)=1168 33 with I(p)=8 4 (2007Do17, unplaced).	
1977 <i>10</i>	0.0	4.6 8	2560		
2101 10	0.0	17.1 9	2684	Other: E(p)=2120 40 with I(p)=9 4 (2007Do17, unplaced).	
2863 10	0.0	21.2 10	3446		
2948 10	0.0	18.8 10	3531	Other: E(p)=2929 31 with I(p)=20 5 (2007Do17, unplaced). E(⁵⁶ Cu): T=2, $J^{\pi}=0^+$, IAS of ⁵⁶ Zn g.s.	

[†] 2014Or04 interpreted all proton groups to feed the g.s. of ⁵⁵Ni, and excluded population of excited states in ⁵⁵Ni considering the measured proton energies and first excited state in ⁵⁵Ni at 2089 keV. All the values are in the center of mass system.

[‡] Uncertainty is quoted as 140 keV by 2014Or04 based on S(p)(⁵⁶Cu)=560 keV 140 (syst, 2003Au03), but note that S(p)=583 keV

⁵⁶Zn εp decay (32.9 ms) 2014Or04,2016Or03 (continued)

Delayed Protons (⁵⁵Ni) (continued)

6 in 2021Wa16. All the intermediate level energies have been adjusted accordingly. [#] Absolute intensity per 100 decays.

⁵⁶Zn εp decay (32.9 ms) 2014Or04,2016Or03

Decay Scheme

I(p) Intensities: I(p) per 100 parent decays

 $^{55}_{28}{
m Ni}_{27}$