¹H(⁵⁶Ni,D) 2014Sa46

History						
Туре	Author	Citation	Literature Cutoff Date			
Full Evaluation	Balraj Singh	ENSDF	30-Apr-2022			

This dataset adapted from compiled dataset from 2014Sa46 in the XUNDL database by E.A. McCutchan (NNDC, BNL), October 8, 2014.

2014Sa46: 37 MeV/nucleon, 72% pure ⁵⁶Ni secondary beam produced in fragmentation of E=140 MeV/nucleon ⁵⁸Ni beam on a ⁹Be target at NSCL-MSU facility, followed by separation of ⁵⁶Ni fragments in flight using the A1900 fragment separator. Reaction target consisted of polyethylene (CH₂)_n of 9.6 mg/cm² thickness. Positions and angles of the incident ⁵⁶Ni beam particles were determined by two microchannel plate (MCP) detectors located upstream of the target. Measured energies and $\sigma(\theta)$ of deuterons using the High Resolution Array (HiRA) consisting of 16 Δ E-E silicon-strip detector telescopes each backed by four CsI(TI) crystals. FWHM=550 keV for peaks from the ground state and 3180 level. ⁵⁵Ni residues analyzed using the S800 spectrometer. Deduced level energies, J^{π} , and spectroscopic factors. Adiabatic Distorted Wave Approximation (ADWA) analysis of $\sigma(\theta)$ data. Comparison with shell model calculations using the SDPFM and SDPF- μ interactions and self-consistent Green's functions theory.

⁵⁵Ni Levels

E(level)	J^{π}	<u>L</u> ‡	S#	Comments	
0	7/2-	3	6.7 7	Configuration= $1f_{7/2}^{-1}$.	
2090	$3/2^{-}$	1	0.14 3	$Configuration = 2p_{3/2}^{2}$.	
				2014Sa46 state that small spectroscopic factor for this state, reproduced by the theoretical calculations, indicates 3-qp configuration of $v1f7/2$) ⁻² $\otimes v2p_{3/2}$, and implies non-negligible $2p_{3/2}$ components in the ⁵⁶ Ni ground state.	
3180 3752?	$1/2^+$ (3/2 ⁺)	0	1.0 2	Configuration= $2s_{1/2}^{-1}$. E(level),J ^{π} : from the Adopted Levels. E(level): for θ <9°, excess strength is observed at E>3.5 MeV which the authors assign to a previously observed (3/2 ⁺), 3.75-MeV level.	

[†] From 2014Sa46, based on L-transfers and systematics of the N=27 isotones, except where noted.

[‡] From a comparison of experimental deuteron angular distributions to ADWA calculations.

[#] Normalization constant which is applied to the theoretical deuteron angular distributions to bring them into agreement with the experimental values; $d\sigma/d\Omega_{exp} = S \times [d\sigma/d\Omega_{ADWA}]$.