⁵⁴Cr(p,p),(p,n),(p,γ) res **1971Mo28,1973Pe07**

History						
Туре	Author	Citation	Literature Cutoff Date			
Full Evaluation	Huo Junde	NDS 109, 787 (2008)	30-Apr-2007			

1971Mo28: E=1.8-2.9 MeV; enriched targets (98%, 3 μ g/cm²), carbon backings (10 μ g/cm²); surface-barrier detector for protons (total resolution of 350 eV); BF₃ counters for neutrons; measured σ (E(p); E) in (p,p) and (p,n) reactions; multichannel and multilevel R-matrix analyses;

1973Pe07: E=1.98-2.02 MeV; the same authors as 1971Mo28; studied ⁵⁴Cr(p,p), $(p,p'\gamma)$, and (p,γ) in the vicinity of fragmented analog of the ground state of ⁵⁵Cr; measured excitation functions;

See also 1971Mo16.

⁵⁵Mn Levels

E(level) [†]	Jπ&	Comments
S(p)+1983.3 [‡]	3/2-	$\Gamma_{\rm p} = 10 \text{ eV } 5, \Gamma_{\gamma} = 1.62 \text{ eV}.$
S(p)+1986.7 [‡]	$3/2^{-}$	$\Gamma_{\rm p} = 115 \text{ eV } 10, \ \Gamma_{\rm v} = 1.03 \text{ eV}.$
$S(p)+1992.0^{\ddagger}$	3/2-	$\Gamma_{\rm p} = 20 \text{ eV} 5$, $\Gamma_{\rm v} = 0.25 \text{ eV}$.
$S(p)+2001.2^{\ddagger}$	3/2-	$\Gamma_{\rm p} = 40 \text{ eV} 5, \ \Gamma_{\rm v} = 0.41 \text{ eV}.$
S(p)+2005.2 [‡]	3/2-	$\Gamma_{\rm p} = 20 \text{ eV} 5, \Gamma_{\gamma} = 0.43 \text{ eV}.$
S(p)+2006.9 [‡]	3/2-	$\Gamma_{\rm p} = 25 \text{ eV} 5, \Gamma_{\gamma} = 0.30 \text{ eV}.$
S(p)+2008.4 [‡]	3/2-	$\Gamma_{\rm p}$ =55 eV 5, Γ_{γ} =1.07 eV.
S(p)+2010.8 [‡]	3/2-	$\Gamma_{\rm p} = 65 \text{ eV} 5, \ \Gamma_{\gamma} = 0.48 \text{ eV}.$
S(p)+2041.5	$1/2^{+}$	$\Gamma_{\rm p}$ =30 eV 5.
S(p)+2060.5	$1/2^{+}$	$\Gamma_{\rm p}$ =10 eV 5.
S(p)+2068.4	$1/2^{+}$	$\Gamma_{\rm p}$ =30 eV 5.
S(p)+2084.6	$1/2^+$	$\Gamma_{\rm p}$ =25 eV 5.
S(p)+2145.4	1/2+	$I_{p} = 100 \text{ eV} 15.$
S(p)+2166.6	1/2	$I_p=30 \text{ eV S}.$
S(p)+21/9.8	1/2	$I_p = 30 \text{ eV S}.$
S(p)+2189.0	$1/2^{+}$	$I_{p}=10 \text{ eV } S.$
S(p) + 2203.0 S(p) + 2224.0	$\frac{1}{2}$	P = 00 eV IO
S(p) + 2224.0 S(p) + 2228.5	$\frac{1}{2}$	$\Gamma_{p=0} = 0.00$
S(p) + 2228.5 S(p) + 2232.6	$\frac{1}{2}$	$\Gamma \rightarrow 0 \text{ eV} S$
S(p) + 2232.0 S(p) + 2241.0	$1/2^+$	$\Gamma_{r}=80 \text{ eV} I0$
S(p)+2256.4	$1/2^+$	$\Gamma_{r}=25 \text{ eV} 5$
$S(p)+2259.9^{\#}$	$1/2^{-}$	$\Gamma_{\rm p}=70$ eV 10.
$S(p)+2264.2^{\#}$	$1/2^{-}$	$\Gamma_{\rm p} = 195 \text{ eV } 20.$
S(p)+2266.4	$1/2^+$	$\Gamma_{\rm p} = 10 \text{ eV } 5.$
S(p)+2267.9 [#]	$1/2^{-}$	$\Gamma_{\rm p}$ =75 eV 10.
S(p)+2270.3 [#]	$1/2^{-}$	$\Gamma_{\rm p}$ =5 eV 5.
S(p)+2274.6 [#]	$1/2^{-}$	$\Gamma_{\rm p}$ =45 eV 5.
S(p)+2279.9	$1/2^{+}$	$\dot{\Gamma_{p}}$ =125 eV 15.
S(p)+2286.1	$1/2^{+}$	$\Gamma_{\rm p}$ =50 eV 5.
S(p)+2295.4	$1/2^{+}$	$\Gamma_{\rm p}$ =70 eV 10.
S(p)+2301.0	$1/2^{+}$	$\Gamma_{\rm p}$ =50 eV 5.
S(p)+2310.0	$1/2^{+}$	$\Gamma_{\rm p}$ =35 eV 5, $\Gamma_{\rm n}$ =5 eV 5.
S(p)+2313.2	$1/2^+$	$\Gamma_{\rm p}$ =45 eV 5, $\Gamma_{\rm n}$ =1 eV 1.
S(p)+2323.1	1/2+	$\Gamma_{p} = /0 \text{ eV } I0, \Gamma_{n} = 5 \text{ eV } 5.$
S(p)+2330.1	$1/2^{+}$	$I_p = 40 \text{ eV} 3, I_n = 5 \text{ eV} 3.$
S(p)+2355.8	$1/2^+$	$I_p = 10 \text{ eV} S, I_n = 1 \text{ eV} I.$
S(p)+2363.7	$1/2^{+}$	$I_p = 15 \text{ eV} 3, I_n = 5 \text{ eV} 3.$
S(p)+2378.9	1/2'	$1_{p}=40 \text{ ev } 10, 1_{n}=5 \text{ ev } 3.$

⁵⁴Cr(p,p),(p,n),(p,γ) res **1971Mo28,1973Pe07** (continued)

⁵⁵Mn Levels (continued)

E(level) [†]	Jπ&	Comments
S(p)+2384.0	$1/2^{+}$	$\Gamma_{\rm p}$ =45 eV 10, $\Gamma_{\rm p}$ =45 eV 15.
S(p)+2393.8	$1/2^+$	$\Gamma_{\rm p}^{\rm r} = 15 \text{ eV } 5, \ \Gamma_{\rm p} = 10 \text{ eV } 5.$
S(p)+2397.0	$1/2^+$	$\Gamma_{\rm p}^{\rm r}$ = 50 eV 5, $\Gamma_{\rm n}^{\rm r}$ = 5 eV 5.
S(p)+2402.3	$1/2^{+}$	$\Gamma_{\rm p}^{\rm p}$ =60 eV 10, $\Gamma_{\rm n}$ =40 eV 10.
S(p)+2404.5	$1/2^{+}$	$\Gamma_{\rm p}^{-}=75 \text{ eV } 15, \ \Gamma_{\rm n}=50 \text{ eV } 15.$
S(p)+2418.1	$1/2^{+}$	$\Gamma_{\rm p}^{-}$ =75 eV 15, $\Gamma_{\rm n}$ =75 eV 15.
S(p)+2422.8	$1/2^{+}$	$\Gamma_{\rm p}^{\rm r}$ =20 eV 10, $\Gamma_{\rm n}$ =180 eV 50.
S(p)+2432.5	$(3/2^{-})$	$\Gamma_{\rm p}$ =100 eV 15, $\Gamma_{\rm n}$ =30 eV 10.
S(p)+2470.8	$1/2^{+}$	$\Gamma_{\rm p}$ =80 eV 10, $\Gamma_{\rm n}$ =80 eV 15.
S(p)+2492.1	1/2+	$\Gamma_{\rm p}$ =50 eV 15, $\Gamma_{\rm n}$ =200 eV 50.
S(p)+2530.9	1/2+	$\Gamma_{\rm p} = 125 \text{ eV } 15, \ \Gamma_{\rm n} = 40 \text{ eV } 15.$
S(p)+2532.0	1/2+	$\Gamma_{\rm p}$ =40 eV 15, $\Gamma_{\rm n}$ =40 eV 20.
S(p)+2542.6	1/2	$I_p = 40 \text{ eV } I 0, I_n = 15 \text{ eV } 5.$
S(p)+2544.3	$1/2^+$	$I_{p} = 100 \text{ eV } 20, I_{n} = 100 \text{ eV } 20.$
S(p)+2545.0 S(p)+2548.1	$1/2^+$	$I_{p} = 90 \text{ eV } 20, I_{n} = 10 \text{ eV } 5.$
S(p)+2546.1 S(p)+2556.2	$\frac{1}{2}$	$r_{p} = 120 \text{ eV} 23$, $r_{n} = 15 \text{ eV} 3$.
S(p)+2556.9	$\frac{1}{2}$	$\Gamma = 10 \text{ eV} \text{ s}, \Gamma = 20 \text{ eV} \text{ J}$
S(p)+2550.9 S(n)+2563.0	$1/2^+$	$F_{p} = 50 \text{ eV} 25$ $F_{p} = 100 \text{ eV} 50$
S(p)+2564.6	$1/2^+$	$\Gamma_{p} = 55 \text{ eV} 25$, $\Gamma_{n} = 100 \text{ eV} 100$
S(p)+2567.6	$1/2^+$	$\Gamma_{\rm p} = 75 \text{ eV} 25, \ \Gamma_{\rm n} = 250 \text{ eV} 100.$
S(p)+2574.6	$1/2^+$	$\Gamma_{\rm p}^{\rm r} = 340 \text{ eV } 50, \ \Gamma_{\rm p} = 80 \text{ eV } 30.$
S(p)+2583.1	$1/2^+$	$\Gamma_{\rm p} = 25 \text{ eV } 10, \ \Gamma_{\rm n} = 70 \text{ eV } 35.$
S(p)+2589.9	$1/2^{+}$	$\Gamma_{\rm p}^{\rm }=45~{\rm eV}~10,~\Gamma_{\rm n}=100~{\rm eV}~30.$
S(p)+2592.1 [@]	3/2-	$\Gamma_{\rm p}$ =30 eV 10, $\Gamma_{\rm n}$ =70 eV 20.
S(p)+2597.0 ^(@)	$(3/2^{-})$	$\Gamma_{\rm p} = 10 \text{ eV } 5, \ \Gamma_{\rm n} = 80 \text{ eV } 25.$
S(p)+2598.1 [@]	3/2-	$\Gamma_{\rm p}$ =40 eV 15, $\Gamma_{\rm n}$ =150 eV 50.
S(p)+2599.9 [@]	3/2-	$\Gamma_{\rm p}$ =30 eV 10, $\Gamma_{\rm n}$ =5 eV 5.
S(p)+2602.8	$1/2^{+}$	$\Gamma_{\rm p}$ =30 eV 15, $\Gamma_{\rm n}$ =10 eV 5.
$S(p)+2603.8^{@}$	$3/2^{-}$	$\Gamma_{\rm p}$ =30 eV 10, $\Gamma_{\rm n}$ =140 eV 50.
S(p)+2607.8	$1/2^{+}$	$\Gamma_{\rm p}^{\prime} = 175 \text{ eV } 30, \ \Gamma_{\rm n} = 30 \text{ eV } 15.$
S(p)+2608.1 [@]	$(3/2^{-})$	$\Gamma_{\rm p}$ =80 eV 20, $\Gamma_{\rm n}$ =80 eV 25.
S(p)+2608.6 [@]	3/2-	$\Gamma_{\rm p}$ =225 eV 50, $\Gamma_{\rm n}$ =50 eV 15.
S(p)+2611.5 [@]	3/2-	$\Gamma_{\rm p}$ =125 eV 30, $\Gamma_{\rm n}$ =325 eV 100.
S(p)+2618.4 [@]	$(3/2^{-})$	$\Gamma_{\rm p} = 10 \text{ eV } 5, \ \Gamma_{\rm n} = 20 \text{ eV } 10.$
S(p)+2620.3	$1/2^{+}$	$\Gamma_{\rm p}$ =25 eV 10, $\Gamma_{\rm n}$ =5 eV 5.
S(p)+2638.3	$1/2^{-}$	$\Gamma_{\rm p}$ =20 eV 10, $\Gamma_{\rm n}$ =40 eV 15.
S(p)+2642.2	1/2+	$\Gamma_{\rm p} = 100 \text{ eV } 20, \ \Gamma_{\rm n} = 200 \text{ eV } 50.$
S(p)+2642.5	3/2-	$\Gamma_{\rm p} = 20 \text{ eV } 10, \Gamma_{\rm n} = 50 \text{ eV } 25.$
S(p)+2647.0	1/2	$\Gamma_{p} = 10 \text{ eV} \text{ s}, \Gamma_{n} = 50 \text{ eV} 20.$
S(p)+2649.6	1/2	$I_{p} = 30 \text{ eV } 10, I_{n} = 50 \text{ eV } 25.$
S(p) + 2052.0 S(p) + 2654.2	$\frac{1}{2^{+}}$	$\Gamma_{\rm p} = 55 \text{ ev } 10, \Gamma_{\rm n} = 00 \text{ ev } 20.$ $\Gamma_{\rm r} = 30 \text{ eV } 10, \Gamma_{\rm r} = 00 \text{ eV } 30$
S(p)+2004.0 S(n)+2662.2	$\frac{1}{2}$	Γ_{p} = 50 eV 10, Γ_{n} = 50 eV 20. Γ_{r} = 10 eV 5 Γ_{r} = 75 eV 25
S(p) + 2666.1	$\frac{1}{2}$	$\Gamma_{\rm p} = 65 \text{ eV} \ 3, \Gamma_{\rm n} = 75 \text{ eV} \ 20$
S(p) + 2600.1 S(p) + 2670.0	$1/2^+$	$\Gamma_{\rm p} = 50 \text{ eV} 10, \ \Gamma_{\rm p} = 100 \text{ eV} 25.$
S(p)+2681.3	$1/2^{-}$	$\Gamma_{\rm p} = 40 \text{ eV } 10, \ \Gamma_{\rm p} = 120 \text{ eV } 30.$
S(p)+2682.9	$1/2^{+}$	$\Gamma_{\rm p}^{\rm P}$ =125 eV 25, $\Gamma_{\rm n}$ =300 eV 75.
S(p)+2685.5	$1/2^+$	$\Gamma_{\rm p}^{\rm r}$ =40 eV 10, $\Gamma_{\rm n}$ =100 eV 25.

[†] E(level)=S(p)+E(p), S(p)=8067.0 keV 4 (2003Au03), E(p) from 1971Mo28, Δ E(p) \approx 3 keV.

54 Cr(p,p),(p,n),(p, γ) res 1971Mo28,1973Pe07 (continued)

⁵⁵Mn Levels (continued)

[‡] Identified by 1971Mo28 as fine structure component of isobaric analog of ⁵⁵Cr g.s..
[#] Identified by 1971Mo28 as fine structure component of isobaric analog of ⁵⁵Cr first excited state.

[@] Identified by 1971Mo28 as fine structure component of isobaric analog of ⁵⁵Cr third excited state.

[&] Evaluator noted that cross sections on resonance do not clearly distinguish between J=L+1/2 and J=L-1/2; therefore, authors' $3/2^{-1}$ and $1/2^{-}$ assignment may be uncertain.