⁵⁵Co ε decay 1977Mi21,1970Lu14

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Huo Junde	NDS 109, 787 (2008)	30-Apr-2007

Parent: ⁵⁵Co: E=0.0; $J^{\pi}=7/2^{-}$; $T_{1/2}=17.53$ h 3; $Q(\varepsilon)=3451.8$ 4; $\%\varepsilon+\%\beta^{+}$ decay=100.0

1977Mi21: sources produced by irradiating high-purity Fe foils by proton beam at 45 MeV for 3 hours; chemically separated; measured $E\gamma$, $I\gamma$ with Ge(Li) detector (resolution: 2.1 keV at 1332 keV).

1970Lu14: measured $E\gamma$, $I\gamma$, and $\gamma\gamma$, compared the levels in ⁵⁵Fe obtained in different decay studies and by the use of different reaction techniques, then established decay scheme.

1966Fi06: sources produced by irradiating enriched Fe foils by deuterons beam at 9-MeV, chemically separated; measured $E\gamma$, $I\gamma$ with Ge(Li) detector, measured β spectrum with a magnetic spectrometer.

Adopted decay scheme is taken mainly from 1970Lu14.

⁵⁵Fe Levels

E(level)	$J^{\pi \dagger}$	E(level)	Jπ†	E(level)	$J^{\pi \dagger}$	E(level)	$J^{\pi \dagger}$
0.0	3/2-	1316.62 17	7/2-	2212.2 3	9/2-	2872.3 3	5/2-,7/2-
411.39 23 931.27 <i>17</i>	$\frac{1/2}{5/2^{-}}$	1408.50 <i>18</i> 2144.0 <i>3</i>	7/2 5/2 ⁻	2301.3 3 2578.8 6	(9/2) 5/2 ⁻	2939.0 4 3108.7 3	(5/2,7/2) $(5/2,7/2)^{-}$

[†] Value from Adopted Levels.

ε, β^+ radiations

For positron measurements, see 1966Fi06. See also 1939La06, 1949De02, 1954Ca18, 1958Mu11, and 1962Ba27. For measurements of β^+ asymmetry from decay of polarized ⁵⁵Co, see 1961Po04.

E(decay)	E(level)	$I\beta^+$ [†]	Ιε [†]	Log ft	$I(\varepsilon + \beta^+)^\dagger$	Comments
(343.1 5)	3108.7		0.38 4	5.67 5	0.38 4	$\varepsilon K = 0.8858; \varepsilon L = 0.09719; \varepsilon M + = 0.01704$
(512.8 6)	2939.0		0.10 1	6.60 5	0.10 <i>1</i>	ε K= 0.8870; ε L= 0.09614; ε M+= 0.01683
(579.5 5)	2872.3		0.18 1	6.456 25	0.18 <i>1</i>	ε K= 0.8873; ε L= 0.09589; ε M+= 0.01679
(873.07)	2578.8		0.043 5	7.44 5	0.043 5	ε K= 0.8881; ε L= 0.09527; ε M+= 0.01666
(1150.5 5)	2301.3	0.0039 5	3.4 4	5.78 5	3.4 <i>3</i>	av $E\beta = 57.65 \ 21; \ \varepsilon K = 0.8874; \ \varepsilon L = 0.09487;$
						$\varepsilon M + = 0.01658$
(1239.6 5)	2212.2	0.0178 13	1.85 <i>13</i>	6.11 <i>3</i>	1.87 16	av $E\beta = 94.53 \ 21; \ \varepsilon K = 0.8801; \ \varepsilon L = 0.09401;$
						$\varepsilon M + = 0.01643$
(1307.8 5)	2144.0	0.0149 19	0.54 7	6.69 6	0.56 8	av $E\beta$ = 122.61 21; ε K= 0.8648; ε L= 0.09233;
						$\varepsilon M + = 0.01614$
2059 5	1408.50	25.6 15	10.7 6	5.785 25	36.4 <i>23</i>	av $E\beta = 435.68 \ 20; \ \varepsilon K = 0.2613; \ \varepsilon L = 0.02780;$
						$\varepsilon M + = 0.004856$
(2135.2 4)	1316.62	4.26 20	1.34 7	6.724 <i>21</i>	5.6 4	av E β = 476.22 20; ε K= 0.2129; ε L= 0.02264;
						$\varepsilon M + = 0.003956$
2535 2	931.27	46 <i>3</i>	5.6 4	6.25 <i>3</i>	52 <i>3</i>	av $E\beta = 648.98 \ 20; \ \varepsilon K = 0.09693; \ \varepsilon L = 0.01030;$
						$\varepsilon M + = 0.001799$

[†] Absolute intensity per 100 decays.

⁵⁵Co ε decay 1977Mi21,1970Lu14 (continued)

$\gamma(^{55}\text{Fe})$

I γ normalization: based on assumption of no decay feeding to ⁵⁵Fe ground state and adopted decay scheme. For other γ -ray measurements, see 1949De02, 1954Ca18, 1958Mu11, 1962Ba27, 1965Ha23, 1966Fi06, 1967St23, 1972McZA, 1975BaXN, and 1982Gr10.

 β + γ are from 1954Ca18, 1958Mu11, 1962Ba27; see also 1949De02.

The measurements of $\gamma(\theta, H, t)$ and linear polarization as well as $\beta + \gamma$ circular polarization; see 1960Ba06, 1961Ch12, 1968Sa15, and 1973Ca06.

 α (K)exp and Ice from 1966Fi06; for other Ice measurements, see also 1949De02 and 1954Ca18. 1958Mu11 measured E(ce).

E_{γ}^{\dagger}	I_{γ} [‡] &	E_i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [#]	$\delta^{@}$	Comments
91.9 2	1.55 9	1408.50	7/2-	1316.62	7/2-			$\alpha(K) \exp > 0.017$
385.4.3	0.72.5	1316.62	7/2-	931.27	$5/2^{-}$	M1		ce(L)+ce(M)>0.000065. $\alpha(K)exp=0.00085.7$
					- 1			ce(L)+ce(M)=0.0000005 3.
411.5 3	1.43 9	411.39	$1/2^{-}$	0.0	3/2-	M1+E2		$\alpha(K) \exp = 0.0013 4$
								Ce(L)+Ce(M)=0.0000011 4. Mult.: 1966Fi06 estimated M1+(<50%)E2.
477.2 2	26.9 19	1408.50	7/2-	931.27	5/2-	M1+E2		$\alpha(K)\exp=0.00084~9$
								ce(L)+ce(M)=0.0000156 8.
								Mult.: 1966F106 estimated M1+(9-33%)E2. δ : -0.04 <i>l</i> or -4.1.2 (1973Ca06).
520.0 <i>3</i>	1.1 <i>1</i>	931.27	5/2-	411.39	$1/2^{-}$	E2		$\alpha(K)\exp=0.00135\ 50$
								$ce(L)+ce(M)=0.000008 \ 4.$
								1966Fi06 pointed out 520 γ 's α (K)exp was
								not resolved from the 511γ).
803.7 2	2.49 17	2212.2	9/2-	1408.50	$7/2^{-}$	M1		α (K)exp=0.00022 4
827.0 4	0.28 8	2144.0	5/2-	1316.62	$7/2^{-}$	M1 - E2	0 10 2	(K) = 0.000164.19
931.1 3	100	931.27	5/2	0.0	3/2	MIT+E2	+0.40 3	$\alpha(\mathbf{K})\exp=0.000164.78$ ce(L)+ce(M)=0.0000137.70
								δ : weighted average from +0.37 4
								(1961Ch12) and +0.42 4 (1968Sa15).
08463	0.60.12	2201.2	$(0/2^{-})$	1216 62	7/2-			Other: $+0.36 \ 11 \ (1960Ba20)$.
1212.8.3	0.35 4	2301.3	(9/2) $5/2^{-}$	931.27	$5/2^{-}$			
1316.6 3	9.45 13	1316.62	$7/2^{-}$	0.0	$3/2^{-}$	E2		$\alpha(K) \exp = 0.000090 \ 14$
								ce(L)+ce(M)=0.0000006 2.
1370.0.3	3 89 29	2301.3	$(9/2^{-})$	931 27	5/2-	F2		Mult.: from adopted γ radiations. $\alpha(K) \exp{-0.000089}$ 14
1570.0 5	5.07 27	2501.5	()/2))51.27	5/2	12		ce(L)+ce(M)=0.0000026 7.
								Mult.: from adopted γ radiations.
1408.5 <i>3</i>	22.5 1	1408.50	7/2-	0.0	3/2-	E2		α (K)exp=0.000073 5
1556.0 4	0.061 13	2872.3	$5/2^{-},7/2^{-}$	1316.62	7/2-			Ce(L)+Ce(M)=0.00000144 51.
1622.3 4	0.060 7	2939.0	$(5/2,7/2)^{-}$	1316.62	7/2-			
1792.1 3	0.109 17	3108.7	$(5/2,7/2)^{-}$	1316.62	7/2-			
1940.0 <i>4</i> 21 <i>44</i> 2 6	0.019.8 0.12.1	2872.5	5/2 ,1/2 5/2 ⁻	931.27	3/2-			
2177.6 6	0.39 5	3108.7	$(5/2,7/2)^{-}$	931.27	$5/2^{-}$			
2578.7 6	0.057 7	2578.8	5/2-	0.0	3/2-			
2872.4 6	0.157 8	2872.3	5/2-,7/2-	0.0	3/2-			
2938.9 5	0.076 13	2939.0	$(5/2,7/2)^{-}$	0.0	$3/2^{-}$			
2108.20	0.007 3	5108.7	(J/Z, I/Z)	0.0	3/2			

[†] From 1977Mi21.

⁵⁵Co ε decay 1977Mi21,1970Lu14 (continued)

$\gamma(^{55}\text{Fe})$ (continued)

[‡] Photon intensities from 1977Mi21 were renormalized by evaluator to give Iγ(931γ)=100.
[#] From 1966Fi06 and 1970Lu14, except as noted.
[@] Phase convention from 1970Kr03.
[&] For absolute intensity per 100 decays, multiply by 0.750 *35*.

 ${}^{55}_{26}\text{Fe}_{29}$ -4

⁵⁵Co ε decay 1977Mi21,1970Lu14

4