Adopted Levels

History					
Туре	Author	Citation	Literature Cutoff Date		
Full Evaluation	Balraj Singh	ENSDF	30-Apr-2022		

 $Q(\beta^{-}) = -17370 SY; S(n) = 18470 SY; S(p) = -35 \times 10^{1} 16; Q(\alpha) = -672 \times 10^{1} 16$ 2021Wa16

Estimated uncertainties (2021Wa16): 430 for $Q(\beta^{-} \text{ and } S(n))$.

Q(\varepsilon)=13700 160, Q(\varepsilon p)=9090 160, S(2n)=34640 520 (syst), S(2p)=3550 160 (2021Wa16).

1987Po04: ⁵⁵Cu produced and identified in Ni(⁵⁸Ni,X), E=55 MeV/nucleon, followed by mass separation via tof and Δ E-E method using LISE separator at GANIL, with a total of 75 events assigned to ⁵⁵Cu in their mass spectral Fig. 2.

2007Bl09: ⁵⁵Cu produced in Ni(⁷⁰Ge,X),E=71.6 MeV/nucleon using LISE-3 separator at GANIL. Measured production cross-sections of ≈80 pb for ⁵⁵Cu, and compared with theoretical values.

- 2007Do17: ⁵⁵Cu produced and identified in fragmentation of 74.5 MeV/nucleon ⁵⁸Ni²⁶⁺ beam with nickel target using SISSE/LISE3 separator facility in GANIL. Fragment identification by energy loss, residual energy and time-of-flight measurements using two micro-channel plate (MCP) detectors and Si detectors. Double-sided silicon-strip detectors (DSSSD) and a thick Si(Li) detector were used to detect implanted events, charged particles and β particles. The γ rays were detected by four Ge detectors. Coincidences measured between charged particles and γ rays. T_{1/2} measured by time correlation of implantation events due to ⁵⁵Cu and subsequent emission of protons and γ rays. Total proton branching ratio is from time spectrum of events with energy >900 keV in the charged-particle spectrum.
- 2013Tr09: ⁵⁵Cu produced in ⁹Be(⁵⁸Ni²⁸⁺,p2n), E(⁵⁸Ni)=160 MeV/nucleon particle-transfer reaction followed by separation using A1900 fragment separator and NSCL Radio Frequency Fragment separation at NSCL, MSU facility. Dominant fragments were ⁵⁴Ni and ⁵⁵Cu. The known decay characteristics of ⁵⁴Ni served as calibration of data for ⁵⁵Cu decay. The fragments were stopped in a planar Ge double-sided strip detectors (GeDSSD) surrounded by SeGA array of two rings of eight Ge detectors each on either side. Measured E γ , I γ , (implants) β -correlated events, $\beta\gamma$ -, $\gamma\gamma$ and $\beta\gamma\gamma$ -coin, half-life of ⁵⁵Cu g.s. Deduced levels, J, π , IAS doublet, beta feedings, log *ft* values, isospin mixing. Discovered split isobaric analog state (IAS) in ⁵⁵Ni.

Additional information 1.

Mass measurement: 2013Ya03.

2021Ru09: shell-model calculations of level scheme of ⁵⁵Cu using KB3G56-ISB interaction, and following population of levels in 55Cu via one-proton and one-neutron removals from a radioactive beams of ⁵⁶Zn and ⁵⁶Cu, respectively.

Theoretical calculations: eight primary references (six for structure and two for ⁵⁵Cu decay) retrieved from the NSR database at www.nndc.bnl.gov/nsr/. These are listed in this dataset under 'document' records.

⁵⁵Cu Levels

E(level)	\mathbf{J}^{π}	T _{1/2}	Comments	
0	(3/2 ⁻)	55.9 ms 18		