⁵⁵Zn εp decay:19.8 ms 2007Do17

History

Type Author Citation Literature Cutoff Date
Full Evaluation Yang Dong, Huo Junde NDS 121, 1 (2014) 20-Jun-2014

Parent: 55 Zn: E=0.0; $J^{\pi}=5/2^{-}$; $T_{1/2}=19.8$ ms 13; $Q(\varepsilon p)=17010$ SY; % εp decay=91 5

A proton group at 4689 keV 38 was observed, possibly from IAS in 55 Cu at \approx 7300 to the second excited state in 54 Ni at about 2500-2600 keV as compared to corresponding mirror state in 54 Fe.

⁵⁴Ni Levels

 $\frac{E(level)}{0.0} \quad \frac{J^{\pi}}{0^{+}}$

⁵⁵Zn-Dqp: SY=700 (syst, 2012WA38).

⁵⁵Zn-T_{1/2}: from 2007Do17. T_{1/2} measured by time correlation of implantation events due to ⁵⁵Zn and subsequent emission of protons and γ rays.

 $^{^{55}}$ Zn-%εp decay: %εp=91.0 51 (2007Do17). Total proton branching ratio is from time spectrum of events with energy >900 keV in the charged-particle spectrum. Possible small contributions from delayed- α and delayed-2p decays are ignored.

Fragmentation reaction used to produce ⁵⁵Zn isotope at SISSE/LISE3 facility in GANIL. Primary beam: ⁵⁸Ni²⁶⁺ at 74.5 MeV/nucleon; target=natural Ni. Fragment separator=ALPHA-LISE3. Fragment identification by energy loss, residual energy and time-of-flight measurements using two micro-channel plate (MCP) detectors and Si detectors. Double-sided silicon-strip detectors (DSSSD) and a thick Si(Li) detector were used to detect implanted events, charged particles and β particles. The γ rays were detected by four Ge detectors. Coincidences measured between charged particles and γ rays.