²⁸Si(³²S,αpnγ) **2010Ru10**

History									
Туре	Author	Citation	Literature Cutoff Date						
Full Evaluation	Yang Dong, Huo Junde	NDS 121, 1 (2014)	20-Jun-2014						

 $E(^{32}S)=130$ MeV beam bombarded enriched 0.5 mg/cm² targets. Measured: E γ , I γ , $\gamma\gamma$ -coin, γ n-coin, $\alpha\gamma$ -coin, p γ -coin, $\gamma\gamma(\theta)$ with the Gammasphere, at LBNL, comprised of 78 Ge detectors, neutron shell consisting of 30 liquid-scintillators replaced the five most forward rings of the gammasphere for the detection of neutrons, and $4\pi i$ CsI(Tl)-array Microball used to detect light charged particles; calculations and analysis with spherical shell model (ANTOINE code), Cranked Nilsson Strutinsky (CNS) and ULTIMATE CRANKER (UC).

E(level) [†]	\mathbf{J}^{π}	Comments
0.0	0^{+}	
197.0 [#] 4	7+	
937.0 8	1+‡	
1446.0 8	2+‡	
1614.0 <i>13</i>	1+‡	
1822.2 11	3+‡	T=0
1887.2 <i>12</i>	5+‡	T=0
2082.8 12	$(5^+)^{\ddagger}$	T=0
2174.0 11	3+	
2289.8 12	(3) [‡]	
2652.2 13	4+‡	T=1
2851.7? <i>13</i>	4+‡	T=0
2915.8 16		$\Gamma(1, 1)$ (1) (1) $\Gamma(1, 1)$ (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)
2979 5	0+	E(level): expected to be the $1=1,6^{\circ}$, $1f_{7/2}$ isobaric triplet state of $\alpha=54$.
31/0.5" 1/	9.	
3326 2		
3363.5 [#] 18	8+	
3794 5		
4727.5 [#] 19	11^{+}	
5046.5 [#] 18	10+	
5358.3 19	10^{+}	
68974	(11^{+})	
7241.0 22	(12^{+})	
8332 3	(12^{+})	
8418 [#] 3	13+	
8824 4		
9688 [@] 3	(13 ⁺)	
9994 [@] 5	(13 ⁺)	
10252 [@] 6		J^{π} : 13 ⁺ predicted in shell-model calculations.
10486 [#] 3	(14^{+})	
10507 [@] 8		

⁵⁴Co Levels

[†] From least-squares fit to $E\gamma's$.

[±] From or consistent with the assignment in adopted Levels.

Band(A): Yrast sequence.

[@] Band(B): Yrare sequence. Yrare sequence is found to feed the 11⁺ state at 4728 keV of the yrast sequence.

²⁸Si(³²S, α pn γ) 2010Ru10 (continued)

γ (⁵⁴Co)

Eγ	I_{γ}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [†]	Comments
193 <i>I</i>	1 1	3363.5	8+	3170.5	9+		
195 <i>1</i>	0.9 3	2082.8	(5^+)	1887.2	5+		
261 <i>I</i>	3.0 4	2082.8	(5^+)	1822.2	3^+	D+Q	$R_{ADO} = 0.95 \ 21.$
3/6 1	11.6.5	1822.2	3^{+}	1446.0	2	D	$R_{ADO} = 0.88 \ 9.$
509 1	18 1	1440.0	2	937.0	1	D	$R_{ADO}=0.87$ 8.
560 1	2.4" 5	2174.0	3-	1614.0	1+		
0/4 1	1.4.5	3320 2174 0	2+	2032.2	4 · 2+		
726 1	2.34	2174.0	3 4+	1440.0	۲ ۲		
/05 /	2.1" 3	2652.2	4	1887.2	3' 2+		$\mathbf{D} = -0.00.22$ for doublet
833 1	124	2032.2	4	2082.8	(5^+)	D+Q	$R_{ADO} = 0.9923$ for doublet.
844 1	304	2289.8	(3)	1446.0	2^+	D+O	$R_{ADO}=1.1.3$
937 1	20.2	937.0	1+	0.0	$\tilde{0}^{+}$	D	$R_{ADO} = 0.91 / 0.$
977 [@] 1	0.9 2	3266.6?		2289.8	(3)		
1029 [@] 1	0.7 2	2851.7?	4+	1822.2	3+		
1183 [@] 2	0.5 2	3266.6?		2082.8	(5^{+})		
(1237)		2174.0	3+	937.0	1^{+}		
1446 <i>1</i>	3 1	1446.0	2+	0.0	0^{+}		
1557 <i>I</i>	60 <i>3</i>	4727.5	11+	3170.5	9+	Q	R _{ADO} =1.25 9.
1614 2	37 1	1614.0	1+	0.0	0^{+}		
1683 <i>1</i>	3 1	5046.5	10^{+}	3363.5	8+		
1690 2	34 1	1887.2	5+	197.0	7+		
1876 1	7.0 6	5046.5	10^{+}	3170.5	9 ⁺	D+Q	$R_{ADO} = 1.21$ 19.
1994 2	21	5358.3 10486	10^{-1}	3303.3 9419	8 · 12+	$(\mathbf{D} \mid \mathbf{O})$	P = -0.01.22
2008 1	2.75	5358 3	(14) 10^+	3170.5	13 Q+	(D+Q) D+O	$R_{ADO} = 0.91 22.$ $R_{ADO} = 0.48 11$
2195 2	2.1	7241.6	(12^+)	5046.5	10+	DIQ	$R_{AD0} = 0.40$ 11.
$2407^{@} 2$	21	7454	(12)	5046.5	10+		
$2446^{@} 2$	135	9688	(13^{+})	7241.6	(12^+)		
2514 2	1.5 5	7241.6	(13^{+})	4727 5	(12) 11^+	D+O	$R_{ADO} = 0.98 \ 10$
2782 5	71	2979	(12)	197.0	7 ⁺	DIQ	RAD0-0.90 10.
2973 [@] 3	32	8332	(12 ⁺)	5358.3	10^{+}		The missing intensity is assumed to be carried by the predicted but unobserved 2073-keV x-ray
2974 2	100 4	3170.5	9+	197.0	7+	0	$R_{ADO}=1.30$ 12.
3165 3	8 1	3363.5	8+	197.0	7+	D+Q	$R_{ADO} = 1.3 4.$
3245 <i>3</i>	3.8 8	10486	(14^{+})	7241.6	(12^{+})	(Q)	$R_{ADO} = 1.27 \ 23.$
3285 <i>3</i>	3 1	8332	(12^{+})	5046.5	10^{+}		
3465 3	2.3 6	8824		5358.3	10+		
3597 5	31	3794	(10+)	197.0	7+		D 0.00 10
3604 4	2.5 4	8332	(12+)	4/2/.5	11'	(D)	$K_{ADO}=0.88 \ I8.$ Mult : $AI=(1)$ transition
3690 3	12.1	8418	13+	4727 5	11+	0	$R_{ADO} = 1.22.13$
3726.3	4.6 7	6897	(11^{+})	3170.5	9+	(0)	$R_{ADO} = 1.6 6.$
4091 4	21	7454	()	3363.5	8+		
4961 <i>4</i>	1.9 4	9688	(13 ⁺)	4727.5	11^{+}	(Q)	R _{ADO} =1.4 5.
5266 4	2.3 4	9994	(13 ⁺)	4727.5	11^{+}	(Q)	R _{ADO} =1.3 4.
5524 5	0.8 3	10252		4727.5	11+		
5779 7	0.3 1	10507		4727.5	11+		

[†] Based on the ratio of γ -ray intensities at 150° and 97° with respect to the incident beam R_{ADO}. [‡] Estimated from the summed intensity of feeding transitions.

Continued on next page (footnotes at end of table)

²⁸Si(³²S, α pn γ) 2010Ru10 (continued)

 γ ⁽⁵⁴Co) (continued)</sup>

[#] Derived from the branching ratio listed in Adopted Levels, Gammas. [@] Placement of transition in the level scheme is uncertain.

²⁸Si(³²S,αpnγ) 2010Ru10

<u>Level Scheme</u> Intensities: Relative I_{γ}

Legend

⁵⁴₂₇Co₂₇

⁵⁴₂₇Co₂₇

²⁸Si(³²S, α pn γ) 2010Ru10 Band(A): Yrast sequence Band(B): Yrare sequence 10486

10507

10252

9994

9688

⁵⁴₂₇Co₂₇