9 Be(54 Ti, 53 Sc γ) 2010Mc01

History								
Туре	Author	Citation	Literature Cutoff Date					
Full Evaluation	Balraj Singh	ENSDF	10-Feb-2014					

Study of one-proton knockout reaction.

 $E(^{54}Ti)=72$ MeV/nucleon was produced from fragmentation of ⁷⁶Ge beam at 130 MeV/nucleon with a ⁹Be target using A1900 fragment separator at NSCL facility. The secondary target of ⁹Be was located at the target position of S800 spectrograph, its focal-plane detection system provided energy-loss measurements, timing information and positions and angles of projectile-like residues. The γ -rays were detected in coincidence with ⁵³Sc residues using SeGa array of 17, 32-fold segmented Ge detectors. Measured $E\gamma$, $I\gamma$, (⁵³Sc) γ coincidence, cross sections and momentum profile of the incident ⁵⁴Ti and parallel momentum distribution of ⁵³Sc residues. Comparisons with full *fp* shell-model calculations using OXBASH code and GXPF1 effective interaction.

Non-observation of γ rays and associated excited states reported in 2009Bh02: Phys Rev C 79, 014313 (2009) using ${}^{48}Ca({}^{238}U,X\gamma)$ reaction is consistent with the experiment in 2010Mc01, where only the population of single-particle states is expected.

⁵³Sc Levels

Note that E(x)=4000 listed in table I of 2010Mc01 is not a level, it is an excitation region in the *sd* shell, assumed for calculational purpose.

E(level) [†]	$J^{\pi \ddagger}$	Comments			
0	(7/2 ⁻)	$1_{f_{7/2}}$ state. Summed (inclusive) measured σ =17.6 mb 6 for one-proton knockout reaction, out of which direct feeding of g.s. is estimated as $\sigma \leq 6.7$ mb 18. Remaining σ =10.9 mb 17 is attributed to the excited states in the sd shell.			
2110 3	(3/2 ⁻)	Most strongly populated excited state, which serves as collector of $\approx 60\%$ of total feeding from higher <i>sd</i> excited states.			
3221? <i>4</i> 3383? <i>4</i>	(5/2 ⁻) (1/2 ⁻)	$2p_{3/2}$ state. $1f_{5/2}$ state. $2p_{1/2}$ state.			

[†] From E γ data. Levels at 3221 and 3383 are tentative.

[‡] As implied from configurations in table I of 2010Mc01.

$\gamma(^{53}Sc)$

E_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Comments
1111 [‡] 2 1273 [‡] 2 ^x 1539 4 2110 3 ^x 2459 5	3221? 3383? 2110	$(5/2^{-})$ $(1/2^{-})$ $(3/2^{-})$	2110 2110 0	(3/2 ⁻) (3/2 ⁻) (7/2 ⁻)	Additional information 1.

 † All γ rays observed in coincidence with ^{53}Sc fragments and are Doppler corrected in energy.

 \ddagger Placement of transition in the level scheme is uncertain.

 $x \gamma$ ray not placed in level scheme.

9 Be(54 Ti, 53 Sc γ) 2010Mc01

Legend

Level Scheme

 $--- \rightarrow \gamma$ Decay (Uncertain)

