⁵³₂₈Ni₂₅-1

Adopted Levels, Gammas

History										
Туре	Author	Citation	Literature Cutoff Date							
Full Evaluation	B. Singh and A. Chakraborty	ENSDF	11-Jun-2013							

 $Q(\beta^{-}) = -15280 SY; S(n) = 14230 SY; S(p) = 2930 SY; Q(\alpha) = -7310 30$ 2012Wa38

Estimated uncertainties (2012Wa38): 800 for $Q(\beta^{-})$, 700 for S(n), 200 for S(p).

S(2n)=32840 800 (syst), S(2p)=4006 27, Q(ep)=11142 26 (2012Wa38). Mass excess=-29631 25 (2012Au07).

1976Vi02 (also 1979ViZY thesis): ⁵³Ni produced and identified in ⁴⁰Ca(¹⁶O,3n),E=60,65 MeV at LBNL cyclotron facility. Measured half-life from decay curve of 1.94 MeV proton group.

1993Xu04: ⁵³Ni produced in ²⁸Si(²⁸Si,X),E=104.0-127.2 MeV; measured delayed-proton spectrum; deduced half-life. Additional information 1.

1994B110: production of ⁵³Ni in ⁹Be(⁵⁸Ni,X),E=650 MeV/nucleon, measured cross section using FRS at GSI facility.

2007Do17: fragmentation reaction used to produce ⁵³Ni isotope at SISSE/LISE3 facility in GANIL. Primary beam: ⁵⁸Ni²⁶⁺ at 74.5 MeV/nucleon; target=natural Ni. Fragment separator=ALPHA–LISE3. Fragment identification by energy loss, residual energy and time-of- flight measurements using two micro-channel plate (MCP) detectors and Si detectors. Double-sided silicon-strip detectors (DSSSD) and a thick Si(Li) detector were used to detect implanted events, charged particles and β particles. The γ rays were detected by four Ge detectors. Coincidences measured between charged particles and γ rays. T_{1/2} measured by time correlation of implantation events due to ⁵³Ni and subsequent emission of protons and γ rays. Total proton branching ratio is from time spectrum of events with energy >900 keV in the charged-particle spectrum. Possible small contributions from delayed- α and delayed-2p decays are ignored.

2012Zh34 (also 2013Ya03): precise mass measurement at HIRFL-CSR facility in Lanzhou using isochronous mass spectrometry technique, mass excess=-29631 25.

2013Su07: ⁵⁸Ni primary beam at E=68.6 MeV/nucleon provided by the Heavy Ion Research Facility in Lanzhou (HIRFL). Target=147 μ g/cm² Ni at the Radioactive Ion Beam Line in Lanzhou (RIBLL). Measured β -delayed protons, (proton) γ -coin, E γ , I γ , time-of-flight, energy loss, T_{1/2} using two plastic scintillator films, a thick silicon detector, a double-sided silicon strip detector (DSSSD) and five segmented clover detectors. Performed nucleosynthesis calculations of rapid proton-capture process in an x-ray burst.

⁵³Ni Levels

Cross Reference (XREF) Flags

9 Be(56 Ni,X γ)

E(level)	J^{π}	T _{1/2}	XREF	Comments
0.0	(7/2 ⁻)	55.2 ms 7	A	 %ε+%β⁺=100; %εp=23.4 10 (2007Do17) T=3/2 J^π: IAS of 4390, (7/2⁻) in ⁵³Co; mirror analog of g.s. 7/2⁻ in ⁵³Mn. T_{1/2}: from proton decay curve over 20 half-lives (2007Do17). Others: 56 ms 8 (2013Su07, from proton decay curve over about 9 half-lives); <85 ms (1993Xu04), 45 MS 15 (1976Vi02,1979ViZY, from proton decay curve for about four half-lives); %εp: from 2007Do17. Other: ≈45% (1976Vi02). 2013Su07 report proton peaks at 1929 and 2399 keV. 2007Do17 report six proton groups at 1077, 1251, 1639, 1939, 2111, and 2399 keV.
319.7 50	$(5/2^{-})$		Α	J^{π} : mirror analog of 378, 5/2 ⁻ in ⁵³ Mn.
1453.4 58	$(11/2^{-})$		A	J^{π} : mirror analog of 1441, 11/2 ⁻ in ⁵³ Mn.

[†] From mirror states in ⁵³Mn (2009Br06).

Adopted Levels, Gammas (continued)

 γ (⁵³Ni)

E _i (level)	\mathbf{J}_i^{π}	Eγ	I_{γ}	\mathbf{E}_{f}	\mathbf{J}_f^{π}
319.7	(5/2-)	319.7 50	100	0.0	$(7/2^{-})$
1453.4	$(11/2^{-})$	1453.4 58	100	0.0	$(7/2^{-})$

Adopted Levels, Gammas

Level Scheme

Intensities: Relative photon branching from each level

 $^{53}_{28}\rm{Ni}_{25}$