${}^{52}_{23}\mathrm{V}_{29}$

⁵⁰Ti(³He,p) **1975Ca07**

History								
Туре	Author	Citation	Literature Cutoff Date					
Full Evaluation	Yang Dong, Huo Junde	NDS 128, 185 (2015)	10-Jul-2015					

E=15 MeV, measured $\sigma(E(p),\theta)$, the reaction protons were momentum analyzed in a multi-angle magnetic spectrograph at angles ranging from 3.75° to 86.25° in steps of 7.7°, overall energy resolution for the experiment was 25 keV FWHM. DWBA analysis. Others: 1974Ha55, 1972Ha31, 1971Ha55.

~ ~

E(level)	\mathbf{J}^{π}	L#	$d\sigma/d\Omega(\mu b/sr)max$	Comments		
0	$1^+, 2^+, 3^+$	2	54			
19 10	, ,-	(2+4)	109			
142 10	1+	0+2	279			
442 10			9			
853 10	$(3^+, 4^+, 5^+)$	(4)	17			
1297 10	(1^{+})	(0+2)	157			
1423 10			18			
1665 10	1+	0+2	580			
1766 10	$1^+, 2^+, 3^+$	2	115			
1802 10			19			
2108 10			21			
2152 10	1+	0+2	129			
2325 10			11			
2396 [‡] 10	$0^+,(1^+)$	0+(2)	233	Identified as possible fragment of AAS. See footnote.		
2435 10	$1^+, 2^+, 3^+$	2	42			
2591 10	1+	0+2	913			
2697 [‡] 10	$0^+,(1^+)$	0+(2)	68	Identified as possible fragment of AAS. See footnote.		
2785 10			28			
2881 10	$1^+, 2^+, 3^+$	2	82			
3066 15	$(1^+, 2^+, 3^+)$	(2)	22			
3149 15	$(1^+, 2^+, 3^+)$	(2)	68			
3249 15			17			
3342 15			21			
3550 15	a		79	L: $L=1$ or $L=0+2$ with $L=2$ dominant.		
3579 15	3+	2+4	21	L: data can be fit by either L=3 or L=4 dominated 2+4. Exclusion of		
				L=3, and hence assignment of $J^{n}=3^{+}$, are based on consideration of		
2602 15			50	(d,p) results.		
3693 15			53			
3720 13			33 22			
3701 13	1+ 2+ 2+	2	23 65			
3804 15	1,2,3	2	13			
4107 15			46			
4076 15			90			
4270 13			80 62			
4327 13			41			
4419 15			10			
4496 15			61			
4557 15	$1^+ 2^+ 3^+$	2	156			
4622 15	1+,2,5	$\frac{2}{0+2}$	147			
4721 15			93			
4910 15			29			
4951 <i>15</i>			62			
5000 15	$(1^+, 2^+, 3^+)$	(2)	27			
5070 15			8			
5096 15			108			

Continued on next page (footnotes at end of table)

⁵⁰ Ti(³ He,p)	1975Ca07	(continued)
⁵⁰ П(⁵ He,p)	19/5Cau/	(continued)

E(level)	\mathbf{J}^{π}	L#	$d\sigma/d\Omega(\mu b/sr)max$	E(level)	J^{π}	L#	$d\sigma/d\Omega(\mu b/sr)max$
5233 15			22	6292 15			64
5273 15			30	6326 15			29
5360 15			32	6374 15			53
5410 15	$(1^+, 2^+, 3^+)$	(2)	57	6414 <i>15</i>			23
5506 15			39	6472 15			23
5549 15			56	6524 15			61
5600 15			78	6557 15			174
5646 15			106	6590 15			60
5711 <i>15</i>			65	6640 15	$1^+, 2^+, 3^+$	2	63
5745 15	$(1^+, 2^+, 3^+)$	(2)	142	6675 <i>15</i>			74
5813 <i>15</i>			76	6744 [†] 15			248
5863 15			39	6809 15			45
5936 15			162	6844 15			90
6021 15			89	6886 15			81
6084 15			185	6919 <i>15</i>			63
6169 15			98	8838 [@] 15	0^{+}	0	615
6225 15			119				

⁵²V Levels (continued)

[†] Probable doublet.

[‡] The pairing-vibration model predicts a T=3, $J^{\pi}=0^+$ anti-analog state (AAS), as well as the T=4 IAS, based on the ⁵²Ti g.s. as parent. These two are the only candidates for L=0 states in the right region to be fragments of AAS. However, the combined yield accounts for only $\approx 18\%$ of that expected from the theoretical ratio $\sigma(AAS)/\sigma(IAS)=3$.

Assignments made by comparing observed angular distributions to DWBA calculations. Empirical criterion employed for distinguishing L=0 from L=0+2. See 1975Ca07 for details.

 $^{@}$ T=4. Identified as IAS ⁵²Ti g.s.