⁹Be(⁴⁸Ca,Xγ) 2009Zh23

	H	History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Yang Dong, Huo Junde	NDS 128, 185 (2015)	10-Jul-2015

⁴⁸Ca beam produced at E=172 MeV, Reaction products were separated using the Fragment Mass Analyzer. γ 's were detected using the Gammasphere array, consisting of 101 Compton-suppressed HPGe detectors. A parallel-grid avalanche counter was used to determine the positions and timing signals of recoils. Particles were identified by analyzing energy loss in the ionization chamber. Measured E γ , I γ , $\gamma\gamma$, (fragment) γ coin, $\gamma(\theta)$ and lifetimes by DSAM.

E(level) [†]	$J^{\pi \#}$	T _{1/2} ‡	Comments
0.0	0^{+}		
1050.2 /	2+		
2264.7 1	$\frac{-}{2^{+}}$	39 fs 6	
2318.4 1	4+		
2432.5 1	2+	119 fs 8	
3029.3 2	6+		
3143.2 1	4+	96 fs 19	
3350.8 1	4+		
3453.7 1	3-	41 fs 6	
3589.5 1	2+		
3881.7 10	0^{+}		E(level): uncertainty of 0.1 in table I of 2009Zh23 seems a misprint.
3923.7 1	2+		
4023.5 1	(4^{+})		
4054.7 8	5+		
4102.4 7	6+		
4287.9 2	8+		
4479.4 2	3-		
4535.6 7	7+	85 fs 15	
4646.8 2	4^{+}		
4787.8 2	2^{+}		
4831.3 6	5-		
4840 <i>I</i>	5+	60 fs 18	
4907 1	(6^{+})	37 fs 13	
5104 <i>1</i>	5-		
5142 6	6+		
5237 1	5+		
5319.4 2			
5819 <i>1</i>	(8^{+})		
6099 2	$6^{(+)}$	60 fs 18	
6693.6 2	10^{+}		
7520 <i>3</i>	10^{+}	41 fs 18	
8858.0 2			
9089.2 2			

⁵²Ti Levels

[†] From least-squares fit to $E\gamma's$.

[‡] From DSAM.

[#] Basd on L(t,p) value and on the measured angular ratios.

⁹Be(⁴⁸Ca,Xγ) 2009Zh23 (continued)

$\gamma(^{52}\text{Ti})$

R(ang dist)=(combined I γ at 79°,81°,90°,99°,101°)/(combined I γ at 32°,37°,143°,148°,163°). Expected ratio is >1 for $\Delta J=2$, quadrupole or $\Delta J=0$, dipole and <1 for $\Delta J=1$, D or D+Q transitions.

Eγ	Iγ	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult. [†]	Comments
231.4 /	0.06.3	9089.2		8858.0		
247 1	0.6 1	4535.6	7+	4287.9 8+		
482 1	0.05 /	4535.6	, 7+	4054.7 5+		
672.6 1	0.6.1	4023.5	(4^+)	3350.8 4+		
701 <i>I</i>	1.2 3	5237	5+	4535.6 7+	0	R(ang dist)=1.2 I.
710.6 /	1.2.2	3143.2	4+	$2432.5 2^+$	×.	
710.9 1	46.2	3029.3	6+	2318.4 4+	0	R(ang dist)=1.26 l.
752 1	1.2.2	4102.4	6+	3350.8 4+		
824.9 1	2.9 2	3143.2	4+	2318.4 4+	0	R(ang dist)=1.7 l.
880.4 2		4023.5	(4^{+})	3143.2 4+	×.	
1025.7 <i>1</i>	4.5 3	4479.4	3-	3453.7 3-	0	R(ang dist)=1.42 8.
1026 <i>I</i>	0.8 2	4054.7	5+	3029.3 6+	×.	
1032.3 /	11.2	3350.8	4^{+}	2318.4 4+	0	R(ang dist)=1.82.
1050.2 1	100 5	1050.2	2+	0.0 0+	ò	R(ang dist) = 1.20 I.
1073 <i>I</i>	1.9 2	4102.4	6^{+}	3029.3 6+	ò	R(ang dist)=1.2 I.
1128.6 <i>I</i>	0.8 2	4479.4	3-	3350.8 4+	C C	
1135.4 <i>I</i>	7.0 3	3453.7	3-	2318.4 4+	D	R(ang dist)=0.75 8.
1157.1 /	0.20.3	3589.5	2+	2432.5 2+		
1214.4 <i>I</i>	5.6 3	2264.7	$\frac{1}{2^{+}}$	$1050.2 2^+$	0	R(ang dist)=1.33 4.
1258.6 1	11.8 6	4287.9	8+	3029.3 6+	ò	R(ang dist) = 1.32.5.
1268.2 <i>I</i>	75 4	2318.4	4+	$1050.2 2^+$	ò	R(ang dist) = 1.29 I.
1283 <i>I</i>	1.4 3	5819	(8^{+})	4535.6 7+	Ď	R(ang dist)=0.72.
1324.7 <i>I</i>	0.6 1	3589.5	2+	2264.7 2+	0	R(ang dist)=1.42.
1334.1 <i>I</i>		4787.8	2^{+}	3453.7 3-		
1376 /	0.30 6	4831.3	5-	3453.7 3-		
1382.3 <i>I</i>	5.4 3	2432.5	2+	$1050.2 2^+$	0	R(ang dist) = 1.21 6.
1481 /	0.6.2	4831.3	5-	3350.8 4+	Ď	R(ang dist)=0.72.
1491.2 <i>I</i>	0.42 7	3923.7	2+	2432.5 2+		
1506 <i>I</i>	6.0 3	4535.6	7+	3029.3 6+	D	R(ang dist)=0.85 4.
1590.5 3		4023.5	(4^{+})	2432.5 2+		
1617 <i>1</i>	0.9 1	3881.7	0 ⁺	2264.7 2+	0	R(ang dist)=1.12.
1617 <i>1</i>	0.53 6	4646.8	4^{+}	3029.3 6+	ò	R(ang dist)=1.5 2.
1644.5 <i>3</i>		4787.8	2+	3143.2 4+		
1650 <i>1</i>	0.52 8	5104	5-	3453.7 3-	0	R(ang dist)=1.7 4.
1659.0 <i>1</i>		3923.7	2+	2264.7 2+		
1697 <i>1</i>	0.33 6	4840	5+	3143.2 4+	D	R(ang dist)=0.74 9.
1705.2 <i>1</i>		4023.5	(4^{+})	2318.4 4+		
1738 2	1.4 2	4054.7	5+	2318.4 4+	0	$R(ang dist)=0.80 \ 8.$
1758.8 <i>1</i>	0.28 5	4023.5	(4^{+})	2264.7 2+	Ò	R(ang dist)=1.2 I.
1783 2	1.5 2	4102.4	6+	2318.4 4+		
1803 <i>I</i>	0.97 9	4831.3	5-	3029.3 6+	D	R(ang dist)=0.8 1.
1865.8 2		5319.4		3453.7 3-		
1878 <i>I</i>	2.9 2	4907	(6^{+})	3029.3 6+	Q	R(ang dist)=1.4 l.
1968.5 2		5319.4		3350.8 4+		
2044 2	1.3 2	6099	6(+)	4054.7 5+	D	R(ang dist)=0.8 l.
2093.0 1	1.2 2	3143.2	4+	1050.2 2+	Ō	R(ang dist)=1.4 I.
2164.6 1	0.43 8	8858.0		6693.6 10 ⁺	•	
2328.3 3		4646.8	4+	2318.4 4+		
2382.1 3		4646.8	4+	2264.7 2+		
2395.3 1	0.11 5	9089.2		6693.6 10+		
2405.6 1	1.8 2	6693.6	10^{+}	4287.9 8+	Q	R(ang dist)= $1.2 l$.

Continued on next page (footnotes at end of table)

⁹Be(⁴⁸Ca,Xγ) 2009Zh23 (continued)

γ (⁵²Ti) (continued)

Eγ	I_{γ}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [†]	Comments
2469.2 1		4787.8	2+	2318.4	4+		
2520 3	0.08 2	4840	5+	2318.4	4+		
2524.1 5		4787.8	2+	2264.7	2^{+}		
2824 6	0.4 1	5142	6+	2318.4	4+	Q	R(ang dist)=1.30 18.
2831 3	0.6 1	3881.7	0^{+}	1050.2	2^{+}		
3001.1 3		5319.4		2318.4	4+		
3054.0 5		5319.4		2264.7	2^{+}		
3232 3	0.9 1	7520	10^{+}	4287.9	8+	Q	R(ang dist)=1.3 I.

[†] From R(ang dist).

 ${}^{52}_{22}{}^{71}_{22}{}^{11}_{30}$

 $\frac{5^{-}}{2^{+}}$

4+

7+

3-

 8^+

6+

 $\frac{2^+}{0^+}$

3- 4^{+}

 4^+

 6^{+}

 2^{+}

4 2+

 2^{+} 0^+

⁹Be(⁴⁸Ca,Xγ) 2009Zh23

 ${}^{52}_{22}{}^{Ti}_{30}$