⁵²Cr(p,nγ) 1973De03,1976Ta14

History							
Туре	Author	Citation	Literature Cutoff Date				
Full Evaluation	Yang Dong, Huo Junde	NDS 128, 185 (2015)	10-Jul-2015				

1973De03: E=8.0-10.0 MeV; measured E γ , I γ , n γ coin, 40 cm³ coaxial Ge(Li) detector (FWHM=3 keV), 5-in diam*3-in cylindrical \neq 213 liquid scintillator.

1976Ta14: E=6.3-7.3 MeV; measured $\gamma(\theta)$, 42 cm³ Ge(Li) detector rotated to 0°, 31°, 55°, 70° and 90° with respect to the proton beam direction.

Level scheme from 1973De03.

⁵²Mn Levels

E(level)	$J^{\pi \dagger}$	Comments
0.0	6+	
378.1 5	2^{+}	
546.4 6	1^{+}	
731.8 4	4	J^{π} : $\gamma(\theta)$ for g.s. transition implies J=4-8, 354-keV transition implies J=0-4.
825.5 6	2,3	
869.7 5		J^{π} : high spin (based on excitation function) (1976Ta14).
884.4 5	3,4	
887.1 <i>6</i>	2	
1232.5 5	2,3,4	
1253.7 4	4,5,6	
1279.2 5		
1647.2 6		
1683.9 <i>4</i>		
1956.0 20		
2044.4 8		
2130.0 20		
2252.6 5		
2337.4 6		
2473.8 8		
2631.2 8		
2926.0 8		

[†] From 1976Ta14, based on $\gamma(\theta)$ and compared with the predictions of compound nuclear statistical model. J^{π} of g.s. and first two excited states taken from Adopted Levels.

γ ⁽⁵²Mn)

E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult.	Comments	
152.2 5	3.1	884.4	3,4	731.8 4	D+Q	$\delta = -0.56 \ 10 \text{ if } J(884) = 4 \ (1976Ta14).$	
168.1 5	70.6	546.4	1^{+}	378.1 2+	D+Q	-5.4< <i>δ</i> <+0.03 (1976Ta14).	
340.4 5	9.4	887.1	2	546.4 1+	D(+Q)	δ : <0.03 (1976Ta14).	
345.1 5	7.6	1232.5	2,3,4	887.1 2			
353.7 5	5.6	731.8	4	378.1 2+	Q	δ : authors assumed negligible L=3 admixture.	
394.6 5	19.3	1279.2		884.4 3,4			
404.4 5	2.0	1683.9		1279.2			
414.7 5	18.0	1647.2		1232.5 2,3,4	ŀ		
447.4 5	100	825.5	2,3	378.1 2+	D+Q	$\delta = -0.038 \ 10 \text{ from E(p)} = 6.85 \text{ MeV data}, \ \delta = -0.005 \ 10 \text{ from E(p)} = 6.50 \text{ MeV data}, \text{ if J(826)} = 3 \ (1976Ta14).$	
453.6 5	29.3	1279.2		825.5 2,3		-(r)	
500.8 5	18.4	1232.5	2,3,4	731.8 4			
506.6 5	(108)	884.4	3,4	378.1 2+		I_{γ} : partially obscured by annihilation radiation.	
508.8 5	(86)	887.1	2	378.1 2+		I'_{γ} : partially obscured by annihilation radiation.	

Continued on next page (footnotes at end of table)

52 Cr(p,n γ) 1973De03,1976Ta14 (continued)

$\gamma(^{52}Mn)$ (continued)

E_{γ}^{\dagger}	Iγ‡	E_i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult.
521.8 5	4.2	1253.7	4,5,6	731.8	4	
731.5 5	64.9	731.8	4	0.0	6+	Q
762.7 5	6.4	1647.2		884.4	3,4	
854.6 5	39.5	1232.5	2,3,4	378.1	2^{+}	
869.7 5	9.7	869.7		0.0	6^{+}	
952.1 5	4.2	1683.9		731.8	4	
1218.9 5	6.2	2044.4		825.5	2,3	
1253.7 5	17.7	1253.7	4,5,6	0.0	6^{+}	
1450.2 5	6.0	2337.4		887.1	2	
1512.0 5	7.4	2337.4		825.5	2,3	
1586.7 5	12.8	2473.8		887.1	2	
1684.1 5	13.6	1683.9		0.0	6^{+}	
1956 <mark>#</mark> 2	8.7	1956.0		0.0	6+	
2084.7 5	6.1	2631.2		546.4	1^{+}	
2130 [#] 2	14.1	2130.0		0.0	6+	
2252.5 5	14.5	2252.6		0.0	6+	
2379.5 5	3.1	2926.0		546.4	1^{+}	

 δ : authors assumed negligible L=3 admixture.

Comments

[†] From 1973De03.

¹ Intensity relative to $I\gamma(447)=100$ at E(p)=10 MeV from 1973De03. Uncertainties $\approx 25\%$ for strong transitions and 50% to 100% for the weaker ones. # Possible doublet.

 ${}^{52}_{25}{
m Mn}_{27}$