⁵³Ni εp decay 2007Do17

History						
Туре	Author	Citation	Literature Cutoff Date			
Full Evaluation	Yang Dong, Huo Junde	NDS 128, 185 (2015)	10-Jul-2015			

Parent: ⁵³Ni: E=0.0; $J^{\pi}=(7/2^{-})$; $T_{1/2}=55.2$ ms 15; $Q(\varepsilon p)=11412$ 26; $\% \varepsilon p$ decay=23.4 10 1976Vi02: ⁵³Ni produced by ⁴⁰Ca(¹⁶O,3n), E=65 MeV, measured: E(p), $T_{1/2}$, a semiconductor counter telescope, 14-19 μ m for the ΔE detectors, 107-250 μm for the E detectors. Other: 1979ViZY.

1993Xu04: ⁵³Ni produced by 28 Si(28 Si,3n), E=104, 115.5, and 127.2 MeV, measured: E(p), T_{1/2}, three particle telescopes, each consisting of three semiconductor detectors: 20 μ m for the Δ E detector, 250 μ m for the E detector, 250 μ m for the E_{rei} detector which was used as a rejection detector to eliminate positron interference.

2007Do17: Fragmentation reaction used to produce ⁵³Ni isotope, primary beam: ⁵⁸Ni²⁶⁺ at 74.5 MeV/nucleon; target=natural Ni. Fragment separator=ALPHA-LISE3. Fragment identification by energy loss, residual energy and time-of-flight measurements using two micro-channel plate (MCP) detectors and Si detectors. Double-sided silicon-strip detectors (DSSSD) and a thick Si(Li) detector were used to detect implanted events, charged particles and β particles. γ rays were detected by four Ge detectors. Coincidences measured between charged particles and γ rays. T_{1/2} measured by time correlation of implantation events due to ⁵³Ni and subsequent emission of protons and γ rays. A partil decay scheme was built.

All dada are from 2007Do17, except as noted.

⁵²Fe Levels

E(level) 0.0 849

[†] From Adopted Levels.

$\gamma(^{52}\text{Fe})$

Eγ	I_{γ}^{\dagger}	E_i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	
849.3 <i>3</i>	12.5 14	849	2^{+}	0.0	0^{+}	

[†] For absolute intensity per 100 decays, multiply by 0.234 10.

Delayed Protons (52Fe)

E(p)	E(⁵² Fe)	I(p) [†]	E(⁵³ Co)	Comments
1929 18	849	23 2	4380	E(p): Others: E(p)=1940 50 (1976Vi02), E(p)=1920 (1993Xu04).

[†] For absolute intensity per 100 decays, multiply by 0.234 10.

⁵³Ni εp decay 2007Do17

Decay Scheme

 γ Intensities: $I_{(\gamma+ce)}$ per 100 parent decays I(p) Intensities: Relative I(p)

