⁵²Ni ε decay 2007Do17,2013Su07,1994Fa06

History								
Туре	Author	Citation	Literature Cutoff Date					
Full Evaluation	Yang Dong, Huo Junde	NDS 128, 185 (2015)	10-Jul-2015					

Parent: ⁵²Ni: E=0; $J^{\pi}=0^+$; $T_{1/2}=40.8$ ms 2; $Q(\varepsilon)=10520$ SY; $\%\varepsilon+\%\beta^+$ decay=100.0

⁵²Ni-Q(ε): 10520 730 (syst,2012WA38).

 ${}^{52}\text{Ni}-\%\varepsilon+\%\beta^+$ decay: $\%\varepsilon p=31.4$ 15 (2007Do17).

2007Do17: Fragmentation reaction used to produce ⁵²Ni isotope, primary beam: ⁵⁸Ni²⁶⁺ at 74.5 MeV/nucleon; target=natural Ni. Fragment separator=ALPHA–LISE3. Fragment identification by energy loss, residual energy and time-of-flight measurements using two micro-channel plate (MCP) detectors and Si detectors. Double-sided silicon-strip detectors (DSSSD) and a thick Si(Li) detector were used to detect implanted events, charged particles and β particles. γ rays were detected by four Ge detectors. Coincidences measured between charged particles and γ rays. T_{1/2} measured by time correlation of implantation events due to ⁵²Ni and subsequent emission of protons and γ rays. A partil decay scheme of 52Ni was established.

2013Su07: produced by Ni(⁵⁸Ni,X), E(⁵⁸Ni)=68.6 MeV/nucleon, natural Ni target: 147 μ g/cm². Measured β -delayed protons, (proton) γ -coin, E γ , I γ , time-of-flight, energy loss, T_{1/2} using two plastic scintillator films, a thick silicon detector, a double-sided silicon strip detector (DSSSD) and five segmented clover detectors. Performed nucleosynthesis calculations of rapid proton-capture process in an x-ray burst.

1994Fa06: source produced by Ni(⁵⁸Ni,X), E=68 MeV/nucleon, thick natural nickel target, mass separation at GANIL. Implanted the ⁵²Ni in a silicon detector (150 μ m) in a microstrip gas counter. Measured the half-life of ⁵²Ni and the energies of β -delayed protons emitted during the decay of ⁵²Ni. Two proton lines have been observed at E(p)=1060 50 and 1340 60 keV with branching ratios of 0.06 *I* and 0.11 *I*, respectively. Analyzed origin of the two proton peaks: The proton line at 1340 keV is attributed to two decays from an IAS (0⁺, ispin=2, mass excess=-31516 keV) and a 1⁺ level (22 keV below the IAS) of ⁵²Co to the ground state of ⁵¹Fe, respectively. The proton line at 1060 keV is also explained by twodecays from the IAS to the first excited state in ⁵¹Fe and other 1⁺ level (294 keV below the IAS) in ⁵²Co to the ground state of ⁵¹Fe, respectively. The ground state of ⁵²Ni.

All data are from 2007Do17, except as noted.

⁵²Co Levels

E(level)	J^{π}	T _{1/2}	Comments
0	(6 ⁺)	104 ms 7	J^{π} : From Adopted Levels. T _{1/2} : from weighted average values of 115 MS 23 (1997Ha04) and 103 ms 7 (2013Su07).
(370 30)	2^{+}		E(level), J^{π} : Based on 378, 2 ⁺ in mirror nucleus ⁵² Mn.
512	1^{+}		E(level), J^{π} : Based on 546, 1 ⁺ in mirror nucleus ⁵² Mn.
2931 30	0^{+}		%p=11.1 (2007Do17)
			E(level): from measured G cascade ($E\gamma$ =2418.3 I3 and $E\gamma$ =142.3 I1) and excitation energy of the first state(370 I30).
			J ^{π} : Based on γ to 1 ⁺ and β ⁺ (from 0 ⁺) decay to the state.
			$\varepsilon \beta^+$ radiations

E(decay)	E(level)	$\mathrm{I}(\varepsilon + \beta^+)^{\dagger}$	Comments	
(7589 <i>SY</i>)	2931	49 5	$I(\varepsilon + \beta^+)$: from the sum of %I(p)=11.1 for Ep=1349 10 and %I γ =38 5 for E γ =2418 3. The sum is away from the calculated feeding of 66% due to the difficulty to determine the γ detection efficency at 2.4 MeV and another possibility missesd other weak proton or γ thansitions.	

[†] Absolute intensity per 100 decays.

⁵²Ni ε decay 2007Do17,2013Su07,1994Fa06 (continued)

 $\gamma(^{52}Co)$

Iy normalization: %Iy=38 5 of 2410y (2007Do17).

Eγ	I_{γ}^{\dagger}	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}
142.3 <i>1</i>		512	1^{+}	370?	2+
2418.3 3	100	2931	0^{+}	512	1^{+}

 † For absolute intensity per 100 decays, multiply by 0.38 5.

⁵²Ni ε decay 2007Do17,2013Su07,1994Fa06

Decay Scheme

Intensities: $I_{(\gamma+ce)}$ per 100 parent decays

