Adopted Levels, Gammas

History								
Туре	Author	Citation	Literature Cutoff Date					
Full Evaluation	Balraj Singh	ENSDF	21-May-2021					

 $Q(\beta^{-})=15760 SY; S(n)=2960 SY; S(p)=22960 SY; Q(\alpha)=-16190 SY$ 2021Wa16

Estimated uncertainties (2021Wa16): $\Delta Q(\beta^{-})=600$, $\Delta S(n)=720$, $\Delta S(p)=920$; $\Delta Q(\alpha)=780$.

 $Q(\beta^{-}n)=13070\ 600,\ S(2n)=4290\ 780\ (syst, 2021Wa16).\ S(2p)=42630\ (theory, 2019Mo01).$

 $Q(\beta^2 n) = 8210\ 600$ and $Q(\beta^3 n) = 4020\ 600$ deduced by evaluator from relevant mass values in 2021Wa16.

2009Ta24, 2009Ta05: ⁵²Ar produced in fragmentation of ⁷⁶Ge beam at 132 MeV/nucleon on ⁹Be targets, with A1900 fragment separator combined with S800 analysis beam line to form a two stage separator system. The transmitted fragments were analyzed event-by-event in momentum and particle identification. The nuclei of interest were stopped in eight Si diodes which provided measurement of energy loss, nuclear charge and total kinetic energy. The time-of-flight of each particle that reached the detector stack was measured in four different ways using plastic scintillators, Si detectors, and parallel-plate avalanche counters. The simultaneous measurement of the atomic number, charge state and mass number. Measured cross section=0.028 pb +35-14 using ⁹Be target (e-mail reply of Nov 11, 2009 from O. Tarasov to B. Singh, first author of 2009Ta24).

⁵²Ar Levels

Cross Reference (XREF) Flags

A 1 H(53 K,2p γ)

E(level) [†]	J^{π}	XREF	Comments		
0	0+	A	$%\beta^-=100; ~%\beta^-n=?; ~%\beta^-2n=?; ~%\beta^-3n=?$ β^- is the only possible decay mode, followed by β-delayed neutron emissions. Theoretical T _{1/2} =15.9 ms, $\%\beta^-$ n=40, $\%\beta^-2n=1, ~\%\beta^-3n=0$ (2019Mo01). Theoretical T _{1/2} =15.1 ms, $\%\beta^-$ n=72.4, $\%\beta^-2n=1.4, ~\%\beta^-3n=0.5$ (2016Ma12). T _{1/2} : half-life of ⁵² Ar has not yet been measured. From time-of-flight of 620-650 ns (e-mail reply of Sept 23, 2009 from O. Tarasov to B. Singh), T _{1/2} >650 ns. From a general decreasing trend of half-lives with increasing neutron number, T _{1/2} for ⁵² Cl is expected to be <50 ms, based on measured half-lives of 1.23 s for ⁴⁷ Ar, 475 ms for ⁴⁸ Ar, 170 ms for ⁴⁹ Ar, and 106 ms for ⁵⁰ Ar, available in literature. Other: 40 ms (2021Ko07,systematics).		
1656 18	$(2^+)^{\ddagger}$	Α			
2295 39	$(2^+)^{\ddagger}$	A			

[†] From $E\gamma$ values.

[‡] From systematics of even-even nuclei, and comparison of measured level energies and cross sections with theoretical calculations.

 $\gamma(^{52}\text{Ar})$

E _i (level)	\mathbf{J}_i^{π}	Eγ	I_{γ}	E_f	\mathbf{J}_{f}^{π}
1656	(2^{+})	1656 18	100	0	0^+
2295	(2^{+})	2295 39	100	0	0^{+}

Adopted Levels, Gammas

Level Scheme

Intensities: Relative photon branching from each level

 $^{52}_{18}{\rm Ar}_{34}$