Ni(⁵⁸Ni,X) 2012Au08,2007Do17

History				
Туре	Author	Citation	Literature Cutoff Date	
Full Evaluation	Wang Jimin and Huang Xiaolong	NDS 144, 1 (2017)	1-Mar-2016	

2012Au08: ⁵¹Ni nuclei produced in the reaction Ni(⁵⁸Ni,X), E(⁵⁸Ni)=74.5 MeV/nucleon using LISE3 separator at GANIL. See 2011As08 for experimental setup for the production of ⁵¹Ni isotope. The analysis of the data presented the first observation of β^+ -delayed two-proton emission from g.s. of ⁵¹Ni, reconstruction of the decay spectrum was done to extract evidence for delayed two-proton decay of ⁵¹Ni.

2007Do17: Fragmentation reaction used to produce ⁵¹Ni isotope at SISSE/LISE3 facility in GANIL. Primary beam: ⁵⁸Ni²⁶⁺ at 74.5 MeV/nucleon, natural Ni. Fragment separator=ALPHA–LISE3. Fragment identification by energy loss, residual energy and time-of-flight measurements using two micro-channel plate (MCP) detectors and Si detectors. Double-sided silicon-strip detectors (DSSSD) and a thick Si(Li) detector were used to detect implanted events, charged particles and β particles. The γ rays were detected by four Ge detectors. Coincidences measured between charged particles and γ rays.

1987Po04: Ni(⁵⁸Ni,x),E=55 MeV/nucleon; measured residual nuclei mass spectra. Magnetic separation, tof, Δ E-E methods .

⁵¹Ni Levels

E(level)	T _{1/2}	Comments	
0	23.8 ms 2		
		%ep: Total proton branching ratio is from time spectrum of events with energy >900 keV in the	
		charged-particle spectrum. Possible small contributions from delayed- α and delayed-2p decays are ignored.	
		% ε^2 p: With the total β^+ p=87.2% 8 measured by 2007Do17, the β^+ 2p/ β^+ 1p ratio is less than 5% in agreement with calculation by 1991De26.	
		$T_{1/2}$: By time correlation of implantation events due to ⁵¹ Ni and subsequent emission of protons and γ rays (2007Do17). Other: >200 ns (TOF, 1987Po04).	
		I^{π} : 7/2 ⁻ from systematics in 2017 Au03. Theoretical calculations in 1007Mo25 suggest 3/2 ⁻	

 J^{π} : 7/2⁻ from systematics in 2017Au03. Theoretical calculations in 1997Mo25 suggest 3/2⁻.

⁵¹₂₈Ni₂₃