2013Pa11,2014Kr04,2014Pa45 U(p,X)

	History	T	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Wang Jimin and Huang Xiaolong	NDS 144, 1 (2017)	1-Mar-2016

2013Pa11, 2014Kr04, 2014Pa45: E(p)=1.4 GeV incident on UCx target at ISOLDE-CERN facility. Fragments diffused out of target and surface ionized, then accelerated to 40 kV, followed by mass separation and bunched by gas-filled Paul Trap (ISCOOL). Hyperfine structure was studied by collinear laser spectroscopy using COLLAPS setup at ISOLDE-CERN. Measured hyperfine spectra. Deduced spin, magnetic moment, rms charge radius. Comparison with shell-model calculations.

2014Pa45 (also 2013Pa11) presents measured hyperfine parameters, hyperfine structure anomalies, spins and magnetic moments, while 2014Kr04 presents measured rms radii, isotope shifts and spin determinations.

⁵¹K Levels

J^{π} Comments
$\frac{1}{3/2^{+}} = \frac{1}{2} \frac{1}$
μ : deduced from hyperfine parameters measured relative to those for ³⁹ K whose parameters are known very precisely. Statistical uncertainty of 0.0022 and an uncertainty of 0.0015 due to hyperfine anomaly are added in quadrature by evaluators.
 μ: deduced from hyperfine parameters measured relative to those for ³⁹K whose parameters are precisely. Statistical uncertainty of 0.0022 and an uncertainty of 0.0015 due to hyperfine anon quadrature by evaluators. Configuration=π1d⁻¹_{3/2} (90-93%) (2014Pa45) from comparison with shell-model calculations.