⁵¹Mn ε decay 1973Fe12,1966Gl02,1974FeZS

History							
Туре	Author	Citation	Literature Cutoff Date				
Full Evaluation	Wang Jimin and Huang Xiaolong	NDS 144, 1 (2017)	1-Mar-2016				

Parent: ⁵¹Mn: E=0.0; $J^{\pi}=5/2^{-}$; $T_{1/2}=46.2 \text{ min } l$; Q(ε)=3207.5 3; $\mathscr{H}\varepsilon+\mathscr{H}\beta^{+}$ decay=100.0

Sources generally produced by ${}^{50}Cr(d,n)$.

1973Fe12,1974FeZS: measured $E\gamma$, $I\gamma$ and $T_{1/2}$ with Ge(Li). Deduced decay scheme.

1966Gl02: measured E γ , I γ , $\beta\gamma$ (t), $\gamma\gamma$ -delayed coincidence.

Decay scheme constructed by identifying which of the known levels are fed in ⁵¹Mn decay.

⁵¹Cr Levels

All data from 1973Fe12, except as noted.

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} ‡	Comments
0.0 749.10 9 1164.47 23 1353.2 5 1557.40 18 1899.45 25 2001.39 12 2312.54 20	7/2 ⁻ 3/2 ⁻ 9/2 ⁻ 5/2 ⁻ 7/2 ⁻ 3/2 ⁻ 5/2 ⁻ 7/2 ⁻	27.704 d 4 7.6 ns 3 $\leq 0.7 \text{ ns}$	$T_{1/2}$: from $\gamma\gamma(t)$ (1973Fe12). Other: 7.5 ns 6 (1966Gl02). $T_{1/2}$: from $\gamma\gamma(t)$ (1966Gl02).

 † From Ey's and decay scheme, using least-squares fit to data.

[‡] From Adopted Levels, except as noted.

 ε, β^+ radiations

E(decay)	E(level)	I β^+ ^{†‡}	$\mathrm{I}\varepsilon^{\dagger\ddagger}$	Log ft	$I(\varepsilon + \beta^+)^{\dagger \ddagger}$	Comments
(378.7 4)	2828.77		0.0069 6	6.03 4	0.0069 6	ε K=0.8886; ε L=0.09488; ε M+=0.01649
(895.0 4)	2312.54		0.091 5	5.662 24	0.091 5	εK=0.8903; εL=0.09351; εM+=0.01622
(1206.1 3)	2001.39	0.000263 15	0.0368 21	6.315 25	0.0371 21	av Eβ=79.87 18; εK=0.8843; εL=0.09260; εM+=0.01606
(1308.1 4)	1899.45	0.00024 3	0.0062 9	7.16 7	0.0064 9	av Eβ=121.56 20; εK=0.8573 2; εL=0.08971 3; εM+=0.015556 4
(1650.1 4)	1557.40	0.0075 12	0.012 2	7.09 7	0.019 3	av Eβ=263.94 19; εK=0.5401 5; εL=0.05642 6; εM+=0.00978 1
(1854.3 6)	1353.2	0.014 3	0.0086 19	7.32 10	0.023 5	av Eβ=351.39 28; εK=0.3333 6; εL=0.03480 6; εM+=0.006032 10
(2458.4 3)	749.10	0.207 7	0.0213 8	7.173 16	0.228 8	av Eβ=619.05 19; εK=0.08337 7; εL=0.008691 7; εM+=0.001506 2
(3207.5 3)	0.0	96.86 <i>3</i>	2.73 3	5.2967 10	99.591 12	av Eβ=963.72 19; εK=0.02447 2; εL=0.002548 2; εM+=0.0004415 3

[†] Values deduced from γ -intensity balance at each level.

[‡] Absolute intensity per 100 decays.

 $^{51}_{24}\mathrm{Cr}_{27}$ -2

⁵¹Mn ε decay 1973Fe12,1966Gl02,1974FeZS (continued)

 $\gamma(^{51}\mathrm{Cr})$

I γ normalization: Based on I γ /I γ ±. All data from 1973Fe12, except as noted.

E_{γ}	$I_{\gamma}^{\dagger \#}$	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. [‡]	δ^{\ddagger}	α@	Comments
603.8 <i>5</i>	5.8 18	1353.2	5/2-	749.10 3/2	- M1+E2	+0.40 +8-4	3.79×10 ⁻⁴ 15	$\alpha(K)=0.000343 \ 13;$ $\alpha(L)=3.18\times10^{-5} \ 13;$ $\alpha(M)=4.19\times10^{-6} \ 16;$ $\alpha(N+)=1.57\times10^{-7} \ 6$
749.07 9	100	749.10	3/2-	0.0 7/2	- E2		3.28×10 ⁻⁴	$\alpha(K) = 0.000297 5;$ $\alpha(L) = 2.76 \times 10^{-5} 4;$ $\alpha(M) = 3.63 \times 10^{-6} 5;$ $\alpha(N+) = 1.352 \times 10^{-7} 19$
808.19 <i>21</i>	5.6 9	1557.40	7/2-	749.10 3/2	- E2		2.67×10 ⁻⁴	$\alpha(K)=0.000242 \ 4;$ $\alpha(L)=2.25\times10^{-5} \ 4;$ $\alpha(M)=2.95\times10^{-6} \ 5;$ $\alpha(N+)=1.101\times10^{-7} \ 16$
1148.0 3	29.5 12	2312.54	$7/2^{-}$	1164.47 9/2	[M1]	0.10 . 4 . 0		
1164.4 <i>3</i> 1353.9 8	28.5 11	1164.47	$\frac{9}{2}{5}/2^{-}$	0.0 7/2 0.0 7/2	- M1+E2 - M1(+E2)	-0.19 + 4 - 2 +0.06 + 4 - 9		
1557.5 3	1.5 2	1557.40	7/2-	0.0 7/2	- M1+E2	-0.38 11	1.40×10 ⁻⁴ 3	α (K)=4.82×10 ⁻⁵ 8; α (L)=4.44×10 ⁻⁶ 7; α (M)=5.84×10 ⁻⁷ 10; α (N+)=8.67×10 ⁻⁵ 22
1899.41 25	2.4 3	1899.45	3/2-	0.0 7/2	- E2		3.04×10 ⁻⁴	$\alpha(K)=3.61\times10^{-5} 5; \alpha(L)=3.32\times10^{-6} 5; \alpha(M)=4.37\times10^{-7} 7; \alpha(N+)=0.000264 4$
2001.35 12	14.0 7	2001.39	5/2-	0.0 7/2	⁻ M1+E2	-0.09 6	2.87×10 ⁻⁴ 5	$\alpha(K)=3.06\times10^{-5} 5;\alpha(L)=2.81\times10^{-6} 4;\alpha(M)=3.70\times10^{-7} 6;\alpha(N+)=0.000253 4$
2079.62 16	2.6 2	2828.77	3/2-	749.10 3/2	- M1(+E2)	+0.09 +30-25	3.18×10 ⁻⁴ 10	$\alpha(K)=2.87\times10^{-5} 5; \alpha(L)=2.64\times10^{-6} 5; \alpha(M)=3.47\times10^{-7} 6; \alpha(N+)=0.000287 10$
2312.52 23	4.9 <i>4</i>	2312.54	7/2-	0.0 7/2	- [M1]		4.12×10 ⁻⁴	$\alpha(K)=2.40\times10^{-5} 4;$ $\alpha(L)=2.20\times10^{-6} 3;$ $\alpha(M)=2.90\times10^{-7} 4;$ $\alpha(N+)=0.000385 6$

[†] Relative photon intensities normalized to $I\gamma(749\gamma)=100$; $I\gamma(511.0(\gamma^{\pm}))=73330$ 1760 (1973Fe12).

[‡] From Adopted Gammas.

[#] For absolute intensity per 100 decays, multiply by 0.00265 7.

^(a) Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

⁵¹Mn ε decay 1973Fe12,1966Gl02,1974FeZS

