	History		
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Wang Jimin and Huang Xiaolong	NDS 144,1 (2017)	1-Mar-2016

 $Q(\beta^{-}) = -3207.5 \ 3; \ S(n) = 9260.64 \ 20; \ S(p) = 9516.35 \ 23; \ Q(\alpha) = -8939.9 \ 4 2017$ Wa10 Other Reactions:

⁴⁸Ti(α ,n): 1989PeZY: E=9,11,13 MeV, measured $\sigma(\theta) \theta = 0^{\circ} - 150^{\circ}$ in 25° steps. 1983Vo13: E=6-13 MeV, measured yield of residual nuclides; deduced total $\sigma(E\alpha)$. Comparison with optical-model calculation. 1971Gr03: E=11.5-22.7 MeV, measured $\sigma(E\alpha; E(n), \theta)$, ⁵¹Cr deduced level densities.

⁵⁴Fe(n, α): 1988Av04: E=14.8, 20 MeV; measured $\sigma(\theta)$; calculated σ with hybrid preequilibrium emission model. 1987SaZY: E=8 MeV; measured σ ; Hauser-Feshbach analysis.

 50 Cr(n, γ) E=Resonance (1986Br12): E=5-300 keV; measured capture and transmission data; deduced resonance parameters.

⁵¹Cr Levels

IAS investigated in ${}^{51}V({}^{3}He,t)$, ${}^{52}Cr({}^{3}He,\alpha)$ and ${}^{51}V(p,n)$. For band configurations, see 1985Av04, 1980Ka10, and 1980Ah04.

Cross Reference (XREF) Flags

		A B C D E	⁵¹ Mn ε decay ⁴⁸ Ti(α ,n γ) ⁴⁹ Ti(³ He,n) (HI,xn γ) ⁵⁰ V(³ He,d)	F ${}^{50}Cr(n,\gamma),(pol n,\gamma) E=thermal$ K ${}^{52}Cr({}^{3}He,\alpha)$ G ${}^{50}Cr(d,p),(pol d,p)$ L ${}^{52}Cr(\gamma,n\gamma')$ H ${}^{51}V(p,n)$ M ${}^{52}Cr(n,2n\gamma)$ I ${}^{51}V(p,n\gamma)$ J ${}^{51}V({}^{3}He,t)$
E(level) [†]	J ^π @	T _{1/2} ‡	XREF	Comments
0.0 ^g	7/2-	27.704 d <i>4</i>	ABCDEFGHI KLM	%ε=100 J ^π : J from atomic beam (1976Fu06), L=3 in ⁵⁰ V(³ He,d), ⁵² Cr(³ He,α) and ⁵⁰ Cr(d,p). T _{1/2} : from weighted average of 27.70 d 3 (2014Un01), 27.710 d 30 (1976WaZH,1982DeYX,1983Wa26), 27.71 d I (1982ChZF), 27.690 d 5 (1980Ho17), 27.720 d 27 (1975La16), 27.703 d 8 (1974Ts01), 27.750 d 9 (1973Vi13), 27.76 d 15 (1972Em01), 27.704 d 3 (1969MeZV, 1970MeZQ, 1980RuZY), 27.80 d 51 (1968Bo25), 27.701 d 6 (1964Ma56), 27.82 d 20 (1963Ho17), 27.75 d 30 (1957Wr37), 27.8 d I (1956Sc87), 27.75 d 30 (1952Ly17). Others: 27.6999 d 13 (2012Fi12, superseded by 2014Un01), 27.7010 d 12 (2002Un02, superseded by 2014Un01), 27.7010 d 12 (1992Un01, superseded by 2014Un01), 27.73 d I (1982HoZJ, superseded by 2014Un01), 28.1 d 17 (omitted as outlier, 1973ArZI), 27.679 d 17 (1976WaZH, superseded by 1983Wa26), 27.7 d 2 (1967LaZZ, superseded by 1975La16), 27.5 (1965Sa09), 28.04 d 16, 27.85 d 2 (omitted as outlier, 1957Ka65), 27.9 d 2 (omitted as outlier, 1956Ka33), 27 (1948Mi12), 26 (1948Ho04), 26.0 d 10, 26.5 d 10 (omitted as outlier, 1940Wa023), 27.7009 d 20 (2004Wo02,evaluation). <i>μ</i> =(−)0.934 5 (1970Ad07 1989Ra17 2014St77)
749.10 ^e 8	3/2-	7.35 ns <i>3</i>	AB D FGHI KLM	$ \mu: {}^{53}$ Cr standard, Atomic Beam Magnetic Resonance (AB)(1970Ad07). μ =-0.86 <i>I2</i> (1974Ko10,1989Ra17,2014StZZ) XREF: K(731). J ^π : E2 γ to 7/2 ⁻ , L=1 in {}^{52}Cr(³ He,α), 50 Cr(d,p). T _{1/2} : From {}^{51}V(p,nγ). Others: 7.25 ns 25 in 48 Ti(α,nγ), 7.6 ns 3 in 51 Mn ε decay, 8.3 ns <i>19</i> in {}^{52}Cr(n,2nγ). μ : From γ(θ,H,t) in 48 Ti(α,nγ), Time Dependent Perturbed Angular

⁵¹Cr Levels (continued)

E(level) [†]	J ^π @	T _{1/2} ‡	XREF	Comments
				Distribution (TDPAD) (1974Ko10).
				IAS of 5133 in ⁵¹ Mn.
776.95 ^e 17	$1/2^{-}$	5.53 ns 7	B FGHI L	J^{π} : L=1 in (d,p) gives $1/2^{-}$ and $3/2^{-}$. $J^{\pi}=1/2^{-}$ from J dependence
				of $\sigma(\theta)$ in (d,p). For $J^{\kappa}=3/2$, the unobserved γ to g.s. would have $P(E^2)(W,\mu) < 0.00015$; on upreconclusion with a set of the set of
				have $B(E2)(w.u.)<0.00015$; an unreasonably small value.
				$1_{1/2}$. From $V(p, ny)$.
1164 59 <mark>8</mark> 14	9/2-	73 fs 7	AB DE GHT KI	I^{π} : M1+F2 γ to 7/2 ⁻ M1 γ from 11/2 ⁻ : also from measured
1101.59 17	>/2	/010/		angular distribution with non-pickup character and
				coupled-reaction channel (CRC) analysis in $({}^{3}\text{He},\alpha)$.
				$T_{1/2}$: From weighted av. of 76 fs 7 in 48 Ti(α ,n γ) and 63 fs 12
				in ${}^{51}V(p,n\gamma)$. Others: ≤ 0.7 ns in ${}^{51}Mn \varepsilon$ decay, and 77 fs in
				(HI, $xn\gamma$).
1352.65 ^e 17	5/2-	3.8 ps +24–14	AB FGHI KL	XREF: $K(1347)$.
				J^{n} : M1+E2 γ to 3/2 ⁻ , M1(+E2) γ to 7/2 ⁻ , L=3 in ⁵² Cr(³ He, α),
				$T_{\rm rest}$ at here > 0.50 ms in $\frac{51}{10}$ W(mmm)
1480 07 <mark>8</mark> 16	11/2-	0.55 ps + 24 - 4	B DF CHT	$1_{1/2}$: other: >0.59 ps in 47 v (p,n γ).
1400.07- 10	11/2	0.55 ps 124 4	D DL GII	I^{π} : Stretched E2 γ to $7/2^{-1}$, γ from $13/2^{-1}$, $L=3$ in ${}^{50}V({}^{3}Hed)$.
				$T_{1/2}$: others: 0.49 ps +28–13 in ⁵¹ V(p.ny), and 0.56 ps in
				(HI, $xn\gamma$).
1557.26 ^e 13	7/2-	4.2 ps +17-10	AB GHI KL	XREF: K(1546).
				J^{π} : E2 γ to 3/2 ⁻ , L=3 and vector and tensor analyzing power in
				50 Cr(pol d,p), L=3 in 52 Cr(3 He, α).
1000 af	2/2-			$I_{1/2}$: other: >0.485 ps in ³⁴ V(p,n γ).
1899.27 3	3/2	0.29 ps + 3 - 2	AB FGHI KL	XREF: K(1896).
				J [*] : L=1 and vector and tensor analyzing power in ${}^{\circ}$ Cr(pol d,p).
2001.01f.21	5/2-	$17^{\#}$ for 2	AD FECUT VI	$I_{1/2}^{\pi}$. M1 + E2 or to $7/2^{-1}$ L = 2 in ${}^{50}V({}^{3}\text{He}\text{ d})$ also $\sigma(0)$ $\sigma(\text{pol})$
2001.915 21	5/2	17 18 2	AD LIGHT KL	and R [I] in 48 Ti(α ny)
				$T_{1/2}$: from average of 19 fs 4 (1971Iv03) and 15.2 fs 42 in
				(p,ny). Other: 24 fs 10 in 48 Ti(α ,ny).
2255.5 <mark>8</mark> 3	$15/2^{-}$	45.8 ps 14	B DE HI	J ^{π} : E2 γ to 11/2 ⁻ , L=3 in ⁵⁰ V(³ He,d), $\gamma(\theta)$ in ⁴⁸ Ti(α ,n γ).
				T _{1/2} : other: 46 ps in (HI,xn γ), >69 fs in ⁵¹ V(p,n γ).
2312.58 ^f 17	7/2-	15 [#] fs 4	AB GHI K	XREF: G(2319).
				J^{π} : (M1) γ to 9/2 ⁻ , L=3 in 50 Cr(d,p) and 52 Cr(3 He, α), also
				$\gamma(\theta), \gamma(\text{pol}) \text{ and } \text{RUL in } {}^{48}\text{Ti}(\alpha, n\gamma).$
0070 ACP 14	0/2-	0.21 0	D (117	$T_{1/2}$: other: <21 fs in ⁴⁸ Ti(α ,n γ).
23/9.46° 14	9/2	0.31 ps 8	B GHI	J [*] : M1 γ to $1/2$, M1+E2 γ to 11/2, also $\gamma(\theta)$, $\gamma(\text{pol})$ and BLU in $\frac{48}{7}$
				KUL III $\sim \Pi(\alpha, \pi\gamma)$. Two: from weighted av of 0.37 ns +14-9 (1971Jv03) 0.15 ns 12
				(1985Av04) in (p,ny), 0.42 ps +14-10 in (α ,ny).
2385.4 4	$13/2^{-}$	58 [#] fs 12	BEIK	XREF: E(2393)K(2391).
	- /			J ^{π} : M1+E2 γ to 11/2 ⁻ , L=3 in ⁵⁰ V(³ He,d), also $\gamma(\theta)$, $\gamma(\text{pol})$
				and RUL in ${}^{48}\text{Ti}(\alpha,n\gamma)$.
				T _{1/2} : From weighted av. of 59 fs 12 in ${}^{51}V(p,n\gamma)$ and 56 fs
			_	$+14-12$ in ⁴⁸ Ti(α ,n γ).
2500	510- 710-		С	π $1/3\pi$ \rightarrow 2 100 $(7102 \cdot 5)$
2099 10	3/2, $1/2$	05# c_ 2	K	J": $L(-He,\alpha)=3$. IAK OI /100 in "Mn.
2704.39° 19	11/2	85" IS 3	R G I	AKEF: $G(2/09)$.
				$J : EZ \gamma$ to $1/2^{-}$, also $\gamma(\theta)$, $\gamma(\text{pol})$ and KUL in $\sim 11(\alpha, n\gamma)$;

⁵¹Cr Levels (continued)

E(level) [†]	J ^π @	$T_{1/2}^{\ddagger}$	XREF	Comments
2762.6.5	1/2+	0.071 m 10	D C I	J=11/2 from shell-model calculation. $T_{1/2}$: others: 39 fs +30-20 in (p,n γ) (1971Iy03), >416 fs in (α ,n γ) (1980Ka10), 234 fs +24-21 in (α ,n γ) (1973Sz01). VDEE B(2760)
2762.6 3	1/2	0.071 ps 10	R G I	XREF: B(2/69). J ^π : L=0 in 50 Cr(d, p) and (3 He,α).
2767.30 ^{<i>f</i>} 18	9/2-	41 fs 8	E I KL	J ^{π} : 1287.2 γ M1+E2 to 11/2 ⁻ , L=3 in ⁵⁰ V(³ He,d), also $\gamma(\theta)$, γ (pol) and RUL in ⁴⁸ Ti(α ,n γ). T _{1/2} : from unweighted av of 49 fs +14–12 in ⁴⁸ Ti(α ,n γ) and 33 fs 10 in ⁵¹ V(p,n γ).
2828.5 4	(3/2)-	59 fs +12-10	AB FGIK	J ^{π} : L=1 in (³ He, α), log <i>ft</i> =6.0 from 5/2 ⁻ , also $\gamma(\theta)$, $\gamma(\text{pol})$ and RUL in ⁴⁸ Ti(α ,n γ). IAR of 7274 in ⁵¹ Mn.
2890.2 4	3/2-	0.35 ps +5-3	B FG I	 J^π: L=1 and vector and tensor analyzing power in ⁵⁰Cr(pol d,p). IAR of 7314 and 7339 in ⁵¹Mn.
2908.1 ^b 7	(5/2) ^{-b}		FG K	
2911.0 ^b 4	$(5/2)^{-b}$	30 fs +19-10	BGIK	
2948.2 6	5/2-,7/2-	0.119 ps + <i>13</i> - <i>10</i>	BGIK	XREF: K(2955). J^{π} : L=3 in ⁵⁰ Cr(d,p) and (³ He, α). J^{π} =3/2 ⁻ ,5/2 ⁻ for possible IAS in ⁵¹ Mn.
2970 8	3/2+,5/2+		G	J^{π} : L=2 in ⁵⁰ Cr(d,p). $J^{\pi}=5/2^+$ for possible IAS of 7415 in ⁵¹ Mn.
3001.7 <i>3</i>	5/2-	15 ps +5-4	BI	J ^{π} : M1(+E2) γ to 7/2 ⁻ ; $\gamma(\theta)$ in ⁴⁸ Ti(α ,n γ).
3004.4 3	$3/2^+$	0.34 ps 4	BgIk	J^{π} : $\gamma(\theta)$ to $5/2^{-}$ and its linear polarization.
3016 8	5/2.4		gк	J [*] : $5/2^{-1}$ for IAR at /459 in ⁵¹ Mn. This is consistent with L=(2) for the possible 3004.4 + 3016 peak in ⁵¹ Cr(d,p). E(level): 3012 <i>10</i> level in ⁵² Cr(³ He, α) probably corresponds to either the 3004.4 3 or the 3016.8 levels
3018.6 6	11/2-	49 fs +21-15	BI	$T_{1/2}$: from 1973Sz01. other:<28 fs (1980Ka10). J ^{π} : 3020.3 γ to 7/2 ⁻ , 633 γ to 13/2 ⁻ , RUL rules out 9/2 ⁻ ;
3055.9 6	1/2-	69 fs 35	B FG	XREF: G(3051). J^{π} : L=1 in (d,p), also $\gamma(\theta)$, $\gamma(\text{pol})$ and RUL in ⁴⁸ Ti(α ,n γ). IAR of 7467 in ⁵¹ Mn.
3109.21 19	(7/2,9/2 ⁻)	54 fs +12-16	BGI	J^{π} : D(+Q) γ to 9/2 ⁻ ; $\gamma(\theta)$ in ⁴⁸ Ti($\alpha,n\gamma$); γ to 5/2 ⁻ .
3125.9 2	3/2-	83 fs +14-28	B FG K	XREF: G(3122)K(3116).
				J ^{<i>a</i>} : L=1, vector and tensor analyzing power in ³⁰ Cr(pol d,p), L=1 in (³ He, α), also $\gamma(\theta)$, $\gamma(\text{pol})$ and RUL in ⁴⁸ Ti($\alpha,n\gamma$). Corresponding LAB in ⁵¹ Mn (7560 level) is $3/2^{-}$ 5/2 ⁻
3134.8 <i>4</i> 3180.7 ^{<i>g</i>} 6	(3/2 ⁻) (17/2) ⁻	45 fs +20-19	B I B DE	J^{π} : γ 's to 5/2 ⁻ and 7/2 ⁻ ; IAR of 7587 in ⁵¹ Mn. T _{1/2} : an effective half-life of 0.42 ps is reported in (HI,xn γ).
3204.1 10	(5/2,7/2)-	43 fs +21-18	B g	J [*] : L=3 in ⁵⁰ V(² He,d), f [*] /2 band member. J ^{π} : E(d,p)=3204 8, with L=3, could correspond to either or both the 3204.1 and 3207.22 levels. Also, presumably either or both of these levels could be the parent of the (5/2 7/2)IAR at 7669 in ⁵¹ Mn
3207.22 25	7/2 ⁻ ,9/2 ⁻	55 fs 14	BgI	J^{π} : D+Q γ to 9/2 ⁻ , γ to 5/2 ⁻ . See also comments on J^{π} for 3204.1 level.
3262.6 7 3266.9 8 3344.21 25	(3/2 ⁻)	31 fs +15-12	B GHI B E B I	J ^π : γ to 7/2 ⁻ , g.s., 3/2 ⁻ for IAR at 7715, 7718 in ⁵¹ Mn. J ^π : L=3 in ⁵⁰ V(³ He,d). 1787γ to 3344 and 3345 same final levels in (p,nγ) and
3348.3 7			FG k	$(\alpha, n\gamma).$ J ^{π} : γ to 3/2 ⁻ .

⁵¹Cr Levels (continued)

E(level) [†]	J^{π}	$T_{1/2}^{\ddagger}$	XREF	Comments
3351.1 6	3/2 ⁻ ,5/2 ⁻ ,7/2 ⁻ ^c		B G k	J^{π} : γ' s to $3/2^{-}$ and $7/2^{-}$.
3376 15	$9/2^{-}$ to $15/2^{-}$		Е	
3447.5 9	13/2-	<70 fs	ΒE	J^{π} : M1(+E2) γ to 15/2 ⁻ ; L=1 in (³ He,d); also $\gamma(\theta)$ in ⁴⁸ Ti(α n γ)
3578.4 11	(11/2,13/2,15/2)	<70 fs	В	J^{π} : γ to $13/2^{-}$.
3590 15	9/2 ⁻ to 15/2 ^{-&}		Е	
3719 8 3722.1 8	1/2+		G I	J^{π} : L=0 in (d,p).
3759 10	9/2 ⁻ to 15/2 ^{-&}		Е	
3766.8 <i>3</i>	1/2 ⁻ ,3/2 ^{-d}		B FG K	J ^{π} : 5495 γ -CP measurement in ⁵⁰ Cr(pol n, γ), γ from 1/2 ⁺ capture state is E1. J ^{π} =(3/2 ⁻) for possible IAR at 8199 in ⁵¹ Mn.
3770.5 3	1/2 ⁻ ,3/2 ^{-d}	<28 fs	B F	$J^{\pi} = (3/2^{-})$ for possible IAR at 8216 in ⁵¹ Mn.
3816.7 ⁸ 12	(19/2 ⁻)		D	$T_{1/2}$: an effective half-life of 0.28 ps is reported in (HI,xn γ).
				J^{π} : f7/2 band member.
3831.37 <i>22</i> 3863 8	(7/2,9/2,11/2)-	30 fs +8-6	B E G I G	J^{π} : γ 's to 7/2 ⁻ and 11/2 ⁻ , L=3 in ⁵⁰ V(³ He,d).
3870.7 <i>10</i> 3897 8			B E G	XREF: E(3878).
3900.3 8	$(5/2^+)$	55 fs +21-15	BI	IAR of 8282 in ⁵¹ Mn.
3927.5 10	$(5/2^+)$	<25 fs	BGI	IAR of 8307 in ⁵¹ Mn.
3933.7 <i>10</i> 3947 <i>10</i>	9/2 ⁻ to 15/2 ^{-&}		B E G	
3953.2 7 3971 2 8	$(5/2^+)$	31 fs +10-7	B I F	IAR of 8336 in ⁵¹ Mn.
3977.4 6	3/2+,5/2+	<35 fs	BG	J ^{π} : L=2 in ⁵⁰ Cr(d,p) and RUL for γ to 7/2 ⁻ rules out mult=M2.
				$5/2^+$ for possible IAR at 8352, 8358 in ⁵¹ Mn.
3984.8 <i>5</i>	$(5/2^+)$	22 fs +5-4	B I	IAR of 8340 in ⁵¹ Mn.
3990 10	3/2+,5/2+		K	J^{π} : L=2 in (³ He, α).
4005 2 8	510-710-		D C	$J^{\pi} = 3/2^+$ for IAR at 8389 in ⁵¹ Mn.
4005.2 8	5/2 ,1/2		BG	$J^{*}: L=3 \text{ in } (d,p);$ $III = 5/2 = f_{ext} IAB at 8201 in 51 Mm$
4006.6.9			т	$J^{*}=3/2$ 101 IAR at 8391 III ²⁴ MII.
4017.2 7	(3/2 ⁻ ,5/2,7/2 ⁻)	21 fs +10-9	BE	J^{π} : γ 's to 3/2 ⁻ and 7/2 ⁻ . L=1+3 for E=4020 <i>15</i> in (³ He,d). If the L=3 component corresponds to this level, then $I^{\pi} = (5/2, 7/2)^{-}$
4020 15	9/2 ⁻ to 15/2 ⁻		B E	XREF: B(4030). I^{π} : L = 1+3 in ⁵⁰ V(³ He d)
4040.0 3	1/2-		FG	J^{π} : L=1 in 50 Cr(d,p) and 5222 γ -CP measurement from $1/2^+$ thermal neutron capture state in 50 Cr(pol n, γ).
4056			R	
4071.2 6	3/2+,5/2+	<40 fs	B GIK	XREF: K(4079).
				J^{π} : L=2 in (³ He, α) and (d,p).
4099 10	7/2+,9/2+		G	$J^{\pi} = 5/2^+$ for the IAR at 8408 in ⁵¹ Mn. J ^{π} : L=4 in (d,p).
4106 7 8				$J^{\pi} = 9/2^+$ for the IAR at 8453 in ⁵¹ Mn.
4106.7 8 4111.0 6 4119.1 77			B B B	
			-	

⁵¹Cr Levels (continued)

E(level) [†]	J ^{π @}	XREF	Comments
4136.7 8 4155 <i>3</i>	7/2+,9/2+	B G G I	J^{π} : L=4 in (d,p). $J^{\pi}=9/2^{+}$ for IAR at 8466 in ⁵¹ Mn.
4161.5 8 4174 <i>15</i> 4181 7 <i>10</i>	9/2 ⁻ to 15/2 ⁻ &	B EG B	
4189.2 10	3/2+,5/2+	B GI	J^{π} : L=2 in (d,p). $J^{\pi}=5/2^{+}$ for IAR at 8491 in ⁵¹ Mn.
4198 <i>10</i> 4214 <i>15</i> 4239.2 <i>10</i> 4254.2 <i>10</i>	(3/2) ⁺ 9/2 ⁻ to 15/2 ⁻	K EG BG B	J ^{π} : From $\sigma(E\alpha,\theta)$ measurements and DWBA analyses, L=2 in (³ He, α). J ^{π} : L=1+3 in ⁵⁰ V(³ He,d).
4258 10	3/2+,5/2+	K	J^{π} : L=2 in (³ He, α). $J^{\pi}=5/2^{+}$ for IAR at 8492 in ⁵¹ Mn.
4273 <i>4</i> 4289.3 <i>5</i>	1/2+	I FG	J ^{π} : L(d,p)=0; primary γ from 1/2 ⁺ in ⁵⁰ Cr(n, γ), γ to 1/2 ⁻ suggests $J^{\pi} \neq 5/2^+$. $J^{\pi} = 1/2^+$ for IAR at 8749 in ⁵¹ Mn.
4318 10		G	
4336 <i>15</i> 4354.6 <i>11</i>	$9/2^{-}$ to $15/2^{-}$ $(1/2^{-}, 3/2^{-})$ $(2/2)^{+}$	E B G	J^{π} : L=(1) in (d,p).
4339 10	$(3/2)^{+}$	R C	$J^{*}: L=2 \text{ in } (^{*}\text{He}, \alpha).$
4426 10	1/2-	G	J^{π} : L=1 in (d,p). $J^{\pi}=1/2^{-1}$ for IAR at 8893 in ⁵¹ Mn.
4439 10	$(5/2)^+$	G	J^{π} : L=2 in (d,p).
4451 15	9/2 ⁻ to 15/2 ^{-&}	Е	
4495 15	-	Е	J^{π} : L=3 in ⁵⁰ V(³ He,d).
4508 <i>10</i> 4533 <i>10</i>	0	G G	
4552 <i>15</i> 4560.9 <i>6</i>	$9/2^{-}$ to $15/2^{-}$ (5/2)	E FG	J^{π} : L=3 in (d,p).
4569 10	$(3/2^+)$	K	J^{π} : L=(2) in (³ He, α).
4577 10	$(1/2)^{-}$	G	J^{π} : L=1 in (d,p).
4583 10	$(7/2)^{-}$	K	J^{π} : L=3 in (³ He, α).
4609 10	1/2+	G	J^{n} : L=0 in (d,p). IAR of 8915 in ⁵¹ Mn.
4629 15	3/7	E	I^{π} : 4625a CP massurement from $1/2^+$ thermal neutron capture state in
4037.0 4	5/2	r	50 Cr(pol n, γ).
464/10	(7/2) =	G	I_{π} , I_{π} , 2 := $(3I_{\pi})$
4668 10	(1/2) $(1/2^{-})$	C K	J^{π} : L=3 III (°He, α). I^{π} : L=(1) in (d p)
4684 10	$(1/2)^+$	G	J^{π} : L=2 in (d,p).
4707 15	(0,2)	G	
4730 10	$0/2^{-}$ to $15/2^{-}$	EG	VDEE , $E(4746)$
4742 10 4769.6 <i>4</i>	9/2 10 15/2 1 1/2 ⁻ ,3/2 ⁻	FG	XREF: E(4/46). XREF: G(4767). J^{π} : L(d,p)=1; primary γ from 1/2 ⁺ in ⁵⁰ Cr(n, γ) is E1. J^{π} =3/2 ⁻ for IAR at 9186 in ⁵¹ Mn
4793 10	$(3/2^{-})$	К	J^{π} : L=(1) in (³ He. α).
4823 <i>10</i> 4833.6 <i>4</i>	<u></u>	G F	

⁵¹Cr Levels (continued)

E(level) [†]	J ^{π @}	XREF	Comments
4849 15	$(1/2)^{-}$	G	J^{π} : L=1 in (d,p).
4874 15	$(1/2^{-})$	G	J^{π} : L=(1) in (d,p).
4916 <i>15</i>		Е	
4930		G	
4939 15	9/2 ⁻ to 15/2 ^{-&}	Е	
4964		G	
4978 10	$(3/2^+)$	K	J^{π} : L=(2) in (³ He, α).
4997 15		EG	
5030 10	$(3/2^+, 5/2, 7/2^-)$	K	J^{π} : L=(2,3) in ⁵² Cr(³ He, α).
5053 15	9/2 ⁻ to 15/2 ^{-&}	Е	
5078 15		G	
5113 <i>15</i>	$1/2^{+}$	G	J^{π} : L=0 in (d,p).
5114 15	-	E	J^{π} : L=3 in ${}^{50}V({}^{3}He,d)$.
5121 10	$(5/2)^{-}$	K	J^{π} : L=3 in (³ He, α).
5145 15	(5/2-)	G	J^{π} : L=(3) in (d,p).
5155 15	$9/2^{-}$ to $15/2^{-\infty}$	E	
5177 15	0	G	
5203 15	9/2 ⁻ to 15/2 ^{-&}	E	
5205.2 8	1/2-	FG	XREF: G(5202).
			J^{π} : L=1 in (d,p).
			$J^{\pi} = 1/2^{-}$ for IAR at 9515 in ⁵¹ Mn.
5222 10	1/2-,3/2-	K	J^{π} : L=1 in (³ He, α).
	0		$J^{\pi} = 1/2^{-1}$ for IAR at 9516 in ⁵¹ Mn.
5230 15	$9/2^{-}$ to $15/2^{-}$	E	
5239.6 11	1/2,3/2	F	J^{π} : 4022 γ CP measurement from $1/2^+$ thermal-neutron capture state in
			50 Cr(pol n, γ).
5249 15	$(5/2)^+$	G	J^{π} : L=2 in (d,p).
5265 10	$(3/2)^+$	K	J^{n} : L=2 in (³ He, α).
5270?	(5/2)+	G	$II \cdot I - 2 : n (d n)$
5204 15	(3/2) $(7/2 - 5/2 2/2^{+})$	G V	$J : L=2 \text{ III } (\mathbf{u}, p).$
5332 15	(1/2, 3/2, 3/2)	C K	$J : L=(3,2) \prod C((\Pi e, \alpha)).$ $I^{\pi} : I = 2 \text{ in } (d \mathbf{n})$
5244 15	(3/2)	F	$J : L-2 \operatorname{III}(\mathbf{u}, \mathbf{p}).$
5344 15	9/2 10 $13/2(2/2+ 5/2 7/2-)$	E V	I^{π} : I = (2.2) in ⁵² Cr(³ H ₂ o)
5357 15	(5/2, 5/2, 7/2)	C K	J . $L=(2,3)$ III CI(He, α).
5395 15	$(1/2)^{-}$	FG	XREF: E(5393)
5575 15	(1/2)	2 0	J^{π} : L=1 in (d,p).
5409 10	$(3/2)^+$	К	J^{π} : L=2 in $({}^{3}He.\alpha)$.
5420 15	_	Е	J^{π} : L=3 in ${}^{50}V({}^{3}He.d)$.
5447	$(1/2^{-})$	G	J^{π} : L=(1) in (d,p).
5449 15		E	
5455 10	$(7/2)^{-}$	K	J^{π} : L=3 in (³ He, α).
5464 15		G	
5473 15		Е	
5495 15	$(1/2)^{-}$	G	J^{π} : L=1 in (d,p).
5532 15	$(5/2^{+})$	G	$J^{n}: L=(2) \text{ in } (d,p).$
553/10	(3/2)	K	J^{n} : L=2 in (³ He, α).
5560 15	$9/2^{-}$ to $15/2^{-\infty}$	E	
5580 15	(21/2)	U C	J'': $I//2$ band member.
5500 15		G	
5630 15	$(1/2^{-})$	G	J^{π} : L=(1) in (d n).
2000 10	(-/-)	~	(-, (-,p).

⁵¹Cr Levels (continued)

E(level) [†]	J ^π @	XREF	Comments		
5656 15		E			
5668.2 5	(1/2)-	FG	XREF: G(5663). J^{π} : L=1 in (d,p).		
5699 15		G			
5711 <mark>8</mark>	(23/2 ⁻)	D	J^{π} : f7/2 band member. T _{1/2} : an effective half-life of 1.18 ps is reported in (HI,xn γ).		
5711 <i>15</i>		Е	E(level): probably different from $23/2^-$, 5711 level in (HI,xn γ). Excitation will require L=5.		
5725 15		G			
5741 <i>15</i>	$(1/2)^{-}$	G	J^{π} : L=1 in (d,p).		
5761 <i>10</i>	$(3/2)^+$	K	J^{π} : L=2 in (³ He, α).		
5769? 15		G			
5787 15		E			
5812 15		G	2		
5832 10	$(7/2)^{-}$	K	J^{π} : L=3 in (³ He, α).		
5850 15		G			
5880 15		E			
5928 15		G	- 50 2		
5943 10	$(1/2, 3/2^{-})$	K	J^{π} : L=(0,1) in ⁵² Cr(³ He, α).		
5950 <i>15</i>	(1/2)-	FG	J^{π} : L=1 in (d,p).		
5964 15	9/2 ⁻ to 15/2 ^{-&}	E			
5970		G			
5991 <i>15</i>	1/2+	G	J^{π} : L=0 in (d,p).		
6034 15	$(1/2)^{-}$	G	J^{π} : L=1 in (d,p).		
6075 <i>15</i>		G			
6107 <i>15</i>		G			
6122 <i>15</i>	$(1/2^{-})$	G	J^{π} : L=(1) in (d,p).		
6136		G			
6157 15		G			
6162	$(21/2, 23/2^{-})$	D	J^{π} : shell model calculation and γ to $19/2^{-}$.		
6184 15	1/2+	G	J^{n} : L=0 in (d,p).		
6219 15	(1/2) =	G			
6236 15	(1/2)	G	$J^{\pi}: L=I \text{ in } (d,p).$		
6254 15	1/2	G	$J^{*}: L=0$ in (a,p).		
6206 15	$(5/2^{+})$	G	$I\overline{\Lambda}$, $I_{-}(2)$ in (A_{n})		
6300 13	$(3/2^{+})$ $(1/2^{-})$	G	$J^{*}: L=(2) \text{ in } (d,p).$		
6260 15	(1/2)	G	J^{*} . L=(1) III (d,p). I^{π} : L=0 in (d,p).		
6378 10	$\frac{1/2}{(3/2)^+}$	G	J . $L=0$ III (u,p). VDEE : $C_{1}(6277)$		
0378 10	(3/2)	GK	$\pi E = 2 \text{ in } (3H_{2} \text{ a})$		
6413 15		C	J. $L=2$ III ($\Pi e, \alpha$).		
6438 15	$1/2^{+}$	G	I^{π} : I = 0 in (d n)		
6478 15	1/2	G	J = L = 0 in (d,p). I^{π} : $I = (0)$ for $6.479 + 6.485$ peaks in 50 Cr(d p)		
6476 15		G	J. $L=(0)$ for 6478 + 6485 peaks in Cl(d,p).		
0483 13		G	J^{*} : L=(0) for 6478 + 6485 peaks in * Cr(d,p).		
6518 15		G	J^{n} : L=2 for 6518 + 6523 peaks in 50 Cr(d,p).		
6523		G	J ^{n} : L=2 for 6518 + 6523 peaks in ⁵⁶ Cr(d,p).		
6564	(5/0)+	G			
0004 15	(3/2)	G	$J^{*}: L=2 \text{ in } (d,p).$		
6611 ["] 5	7/2-	Н ЈК	XREF: H(6650)K(6630).		
			J^{π} : L(³ He, α)=3, IAS of 7/2 ⁻ g.s. in ⁵¹ V.		
6660 15	$(5/2^+)$	G	J^{n} : L=(2) in (d,p).		
6680 15		G			
6693 15		C G			
0/18 13		G			

⁵¹Cr Levels (continued)

E(level) [†]	J ^π @	XREF		Comments
6723 15		G		
6741 15		G		
6760 15		G		
6775 15	$(5/2)^+$	G		J^{π} : L=2 in (d,p).
6803 15	$(5/2)^+$	G		J^{π} : L=2 in (d,p).
6820		G		
6866 15	$(5/2)^+$	G		J^{π} : L=2 in (d,p).
6879 15	(-1)	G		
6894	(23/2,25/2 ⁻)	D		J^{π} : γ to $(21/2^{-})$ and shell calculation. T ₁ / γ : an effective half-life of <2 ps is reported in (HLxn γ).
6896 15	$(1/2)^{-}$	G		J^{π} : L=1 in (d,p).
6920 15		G		
6979 15		G		
6995 15	$(1/2^{-})$	G		J^{π} : L=(1) in (d.p).
7018 15	$1/2^+$	G		J^{π} : L=0 in (d,p).
7038 15	$(1/2)^{-}$	G		I^{π} : L=1 in (d p)
7078	(1/2)	G		I^{π} : I = (2) for 7078 \pm 7088 neaks in ⁵⁰ Cr(d n)
7078		G		$J = L^{2} (1017078 + 7000 \text{ peaks in Cr(d,p)})$
7088	$(5/2)^{-}$	G		J^{π} : L=(2) for J^{π}/J^{π} + J^{π} + J^{π} = J^{π} (d r)
7130 73	(3/2)	G		$J^{*}: L=3 \text{ in } (d,p).$
/141 15	(5.0+)	G		
/16/ 15	$(5/2^+)$	G		J^{A} : L=(2) in (d,p).
/208.4 /	(1/2)	FG		XREF: $G(7205)$. J ^{π} : L=1 in (d,p).
7240 15		G		-
7247.9 9	$(1/2, 3/2, 5/2^+)$	F		J ^{π} : primary γ from 1/2 ⁺ in ⁵⁰ Cr(n, γ).
7271 15		G		J^{π} : L=(0) for 7268 + 7278 peaks in ⁵⁰ Cr(d,p).
7282 15		G		J^{π} : L=(0) for 7268 + 7278 peaks in ⁵⁰ Cr(d,p).
7302 15	$1/2^{+}$	G	К	XREF: K(7310).
	-/ -			I^{π} : I =0 in (d n) and (³ He α)
7342 15	1/2+	G		$J^{\pi}: L=0$ in (d,p) and (110,d).
7388 15	$(5/2)^+$	G		$I^{\pi}: I = 2$ in (d,p).
7426 15	$(5/2)^+$	G		$I^{\pi}: I = 2$ in (d,p).
7445 15	(3/2)	G		$J : L = 2 \ln (u, p).$
7470 15		G		
7504 15		G		
7555 15	$(5/2)^+$	G		I^{π} . I - 2 in (d n)
7555 15	(3/2) 1/2 ⁺	G		J . $L=2 \ln (u,p)$. I^{π} . $I=0$ in (d,p)
7390 13	1/2	G		J = 0 In (a, p).
/628		G		J^{*} : L=2 for $/628 + /648$ peaks in 50 Cr(d,p).
7643	1	G		J^{n} : L=2 for 7628 + 7648 peaks in ${}^{50}Cr(d,p)$.
7670 15	$1/2^{+}$	G	K	XREF: K(7680).
				J^{π} : L=0 in (d,p) and (³ He, α).
7689		G		J^{π} : L=2 for 7689 + 7703 peaks in ⁵⁰ Cr(d,p).
7703		G		J^{π} : L=2 for 7689 + 7703 peaks in ${}^{50}Cr(d,p)$.
7721 15		G		
7758 15		G		
7787 15	$3/2^{+}$ $5/2^{+}$	G	к	I^{π} : L=2 in (d n) and (³ He α)
7818 15	-,- ,-,-	c .		I^{π} : I = 2 for 7819 + 7834 peaks in ⁵⁰ Cr(d p)
7025 15		G C		$I_{\pi} = 2 \text{ for } 7010 + 7024 \text{ poaks in } 50 Cr(d,p).$
1033 IJ 7056 15		G		J. $L=2.101/019 + 7004$ peaks III $\sim CI(u,p)$.
1830 13	$(5/2^{+})$	G		Π , I (0) in (1 m)
18/4 13	$(3/2^{+})$	G		J^{T} : L=(2) III (d,p). J^{T} : L=(2) iII (d,p).
7901 75	1/2	G		$J^{TT} = U \ln (d,p).$
1932-15	$(5/2)^{+}$	G		$J^{T} = L = 2 \ln (d, p).$
/954	1/2	G		J^{T} : L=U in (d,p).
8003	1/2 '	G		$J^{*}: L=0$ in (d,p).

⁵¹Cr Levels (continued)

E(level) [†]	J ^π @	XREF	Comments			
8024		G				
8047	$1/2^{+}$	G	J^{π} : L=0 in (d,p).			
8078	$1/2^{+}$	G	J^{π} : L=0 in (d,p).			
8124	$(5/2)^+$	G	J^{π} : L=2 in (d,p).			
8420 20	$(1/2^+)$	K	J^{π} : L=(0) in 52 Cr(3 He, α).			
8480 20	$1/2^{+}$	K	J^{π} : L=0 in 52 Cr(3 He, α).			
8485	$(25/2, 27/2^{-})$	D	J^{π} : shell model calculation and γ to $23/2^{-}$.			
9000		С				
9220 ⁱ 20	1/2+	K	J^{π} : L=0 in ⁵² Cr(³ He, α).			
9261.63 22	$1/2^{+}$	F				
9330 ^j 20	3/2+,5/2+	K	J^{π} : L=2 in ⁵² Cr(³ He, α), J^{π} =3/2 ⁺ for possible IAS at 2667 in ⁵¹ V.			

[†] For bound states connected by gammas, E(level) are from level scheme and $E\gamma$'s, using least-squares fit to data. In addition to the levels given here, broad peaks are observed in (³He,n), at 0, 2500, 6700, and 9000. For unbound states, E(level) are from (n,γ) , except as noted.

- [±] From DSA measurement in ⁴⁸Ti(α ,n γ), except as noted.
- [#] From DSA measurement in ${}^{51}V(p,n\gamma)$.
- [@] From L value in ${}^{50}Cr(d,p)$ or ${}^{52}Cr({}^{3}He,\alpha)$, and IAR in ${}^{51}Mn$, except as noted.
- $^{\&}$ L=1 in 50 V(³He,d).
- ^a From corresponding IAR in ⁵¹Mn.

^b E=2907 8 in (d,p) and 2914 10 in (³He, α), both with L=3, could correspond to either or both of the 2908.1 and 2911.0 levels. There is a $5/2^{-1}$ resonance at 7357 in ⁵¹Mn that could be the IAR of either or both of these levels.

^c $J^{\pi}=5/2^{-}$ for E=3352 8 in (d,p) from L=3 and analyzing power, and $J^{\pi}=5/2^{-},7/2^{-}$ for E=3349 10 in (³He, α) from L=3. These peaks could correspond to either or both the 3348.3 and 3351.1 levels. Possible IAR with $J^{\pi}=5/2^{-}$ are observed at 7787 and 7792 in ⁵¹Mn. If the analog association is correct, then both the 3348.3 and 3351.1 levels can be assigned $J^{\pi}=5/2^{-}$.

^d L(d,p), 3 He, α)=1 for the 3766.8 and/or 3770.2 levels. In (pol d,p), 1977Ba14 suggest the possibility of a 1/2⁻, 3/2⁻ doublet. Possible parent analogs of levels in ⁵¹Mn with E=8199 and 8216, both with $J^{\pi}=(3/2^{-})$. If L=1 for 3770.2, then γ -CP in (n,γ) gives J=3/2.

^e Band(A): $K^{\pi}=1/2^{-}$ band. Members of band: $1/2^{-}$ to $11/2^{-}$. Band parameter: A=77.34 b=-0.49 (1985Av04, 1980Ka10, 1980Ah04).

^f Band(B): $K^{\pi}=3/2^{-}$ band. Members of band: $3/2^{-}$ to $9/2^{-}$. Band parameter: A=16.28, B=0.91 (1985Av04).

- ^g Band(C): f7/2 band. Members of band: 7/2⁻ to 23/2⁻ (1991Ca30).
- ^h IAS of $7/2^-$ g.s. in ⁵¹V.
- ^{*i*} IAS of $1/2^+$ 2546 in ⁵¹V. ^{*j*} IAS of $(3/2)^+$ 2677 in ⁵¹V.

	Adopted Levels, Gammas (continued)									
							γ ⁽⁵¹ Cr)			
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	Ιγ ^{&}	\mathbf{E}_{f}	${ m J}_f^\pi$	Mult. ^a	δ^{a}	α^{f}	Comments	
749.10 776.95	3/2 ⁻ 1/2 ⁻	749.07 9 27.85 19	100 100	0.0 749.10	7/2 ⁻ 3/2 ⁻	E2 M1		0.905	B(E2)(W.u.)=0.065 8 α (K)=0.800; α (L)=0.0794 B(M1)(W.u.)=0.077 8 E _γ : from E(level) difference. Mult.: from ⁵¹ V(p,nγ). Comparison to RUL gives $\delta^2 < 7.8 \times 10^{-4}$. $\delta_{10}^{2} < 0.017$ in ⁵¹ V(p, nγ)	
		(776.95 17)	<0.6	0.0	$7/2^{-}$				E_{γ} : transition not observed. Ey from E(level) difference.	
1164.59	9/2-	1164.5 <i>1</i>	100	0.0	7/2-	M1+E2	-0.19 +4-2		B(M1)(W.u.)=0.177 17; B(E2)(W.u.)=11 5 E_{γ} : from (p,n γ). other δ :-0.17 +1-2 from (α ,n γ); -0.8 +3-4 from (p,n γ).	
1352.65	5/2-	575.6 1	16.0 [#] 5	776.95	$1/2^{-}$	E2			B(E2)(W.u.)=19 +7-12 E_{v} : from (p,n γ).	
		603.5 <i>3</i>	100.0 [#] 21	749.10	3/2-	M1+E2	+0.40 +8-4		B(M1)(W.u.)=0.0128 7; B(E2)(W.u.)=13 5 E_{γ} : from weighted average of 603.3 4 in (n, γ) and 603.8 5 in ε decay. Other:603.4 9 in (p,n γ). other δ :+0.07 4 in (n,n γ).	
		1353.7 6	61.5 [#] 14	0.0	7/2-	M1(+E2)	+0.06 +6-9		B(M1)(W.u.)=0.000807 6 E_{γ} : from a weighted average of 1353.5 9 in (n, γ) and 1353.9 8 in ε decay. other: 1352.8 3 in (α ,n γ). other δ :+0 19 3 from (n n γ)	
1480.07	11/2-	315.60 <i>20</i> 1480 3 <i>3</i>	92.7 <i>21</i> 100 [#] 3	1164.59	9/2 ⁻ 7/2 ⁻	M1(+E2) E2	+0.03 3		Mult.: D(+Q) from $\gamma(\theta)$ in $(\alpha, n\gamma)$; polarity from level scheme. B(E2)(Wu)=6.7 ±6-3	
1557.26	7/2-	$204.0^{\#} 8$	6.42 [#] 13	1352.65	5/2 ⁻	[M1]			B(M1)(W.u.)=0.031 +8-13	
		808.19 21	100.0 [#] 25	749.10	3/2-	E2			B(E2)(W.u.)=28 + 7 - 12	
		1557.5 3	19.5 [#] 4	0.0	7/2-	M1+E2	-0.38 11		B(M1)(W.u.)=0.000188 14; B(E2)(W.u.)=0.024 13 I _{γ} : other: 17.3 25 in (α ,n γ), 27 4 in ε decay.	
1899.2	3/2-	1124.0 [‡] 9	10.7 ^c 12	776.95	$1/2^{-}$					
		1149.4 [‡] 9 1899.41 25	24.60 ^c 7 100.0 ^c 5	749.10 0.0	3/2 ⁻ 7/2 ⁻	E2			B(E2)(W.u.)=5.24	
2001.91	$5/2^{-}$	2001.35 12	100	0.0	$7/2^{-}$	M1+E2	-0.09 6		$B(M1)(W.u.)=0.160 \ 19$	
2255.5 2312.58	15/2 ⁻ 7/2 ⁻	775.4 2 1148.0 <i>3</i> 2312.52 <i>23</i>	100 100 <i>3</i> 16.1 <i>12</i>	1480.07 1164.59 0.0	11/2 ⁻ 9/2 ⁻ 7/2 ⁻	E2 [M1] [M1]			B(E2)(W.u.)=3.92 <i>12</i> B(M1)(W.u.)=0.84 <i>23</i> B(M1)(W.u.)=0.016 <i>5</i>	
2379.46	9/2-	822.3 [#] 3	46 ^e 7	1557.26	$7/2^{-}$	M1+E2	+1.2 [#] +5-8		Mult.: D+Q from $(p,n\gamma)$ and $(HI,xn\gamma)$.	

10

L

$\gamma(^{51}Cr)$ (continued)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	Ι _γ &	$E_f \qquad J_f^{\pi}$	Mult. ^a	δ^{a}	Comments
2379.46	9/2-	899.9 [#] 5	64 ^e 11	1480.07 11/2	- M1(+E2)	+0.02 +14-13	B(M1)(W.u.)=0.017 6
	-)	1026.7 [#] 2	93 ^e 11	1352.65 5/2-	E2		B(E2)(W.u.)=37 11 δ :+0.02 13.
		1215.5 [#] 5	54 ^e 7	1164.59 9/2-	M1+E2		B(M1)(W.u.)<0.0063; B(E2)(W.u.)<9.8
		2379.3 [#] 2	100 ^e 11	0.0 7/2-	M1+E2	-0.78 [#] +25-33	B(M1)(W.u.)=0.0009 4; B(E2)(W.u.)=0.23 11
2385.4	$13/2^{-}$	905.3 <i>3</i>	100	1480.07 11/2	- M1+E2	-0.07 2	B(M1)(W.u.)=0.50 11; B(E2)(W.u.)=14 13
2704.39	$11/2^{-}$	1147.9 [#] 3	$100^{d} 6$	1557.26 7/2-	E2		B(E2)(W.u.)=220 19
		1224.7 [#] 3	18.9 ^d 14	1480.07 11/2	- M1(+E2)	+0.3 +8-5	B(M1)(W.u.)=0.013 6 other δ :0.09 2 from (p,n γ).
		1538.8 [#] 3	12.2 ^d 14	1164.59 9/2-	M1(+E2)	-0.09 +39-24	B(M1)(W.u.)=0.0064 10
		2703.6 [#] 6	4.1 ^d 14	0.0 7/2-			B(E2)(W.u.)=0.163 24
2762.6	$1/2^{+}$	2013.6 [#] 5	100#	749.10 3/2-	[E1]		B(E1)(W.u.)=0.00085 12
2767.30	9/2-	454.8 [#] 5	4.2 [#]	2312.58 7/2-			
		1287.2 [#] 4	43 [#] 4	1480.07 11/2	- M1+E2	+0.09 2	B(M1)(W.u.)=0.054 <i>12</i> ; B(E2)(W.u.)=0.4 +17-3 δ : From (p,ny). Other: +0.07 +16-14 in (α ,ny).
		1603.4 [#] 5	53 [#] 4	1164.59 9/2-	[M1]		B(M1)(W.u.)=0.034 8
		2767.1 [#] 2	100 [#] 6	0.0 7/2-	M1+E2	-0.36 11	B(M1)(W.u.)=0.0114 25; B(E2)(W.u.)=0.39 25 δ : From (p,n γ). Mult : D+O from (p,n γ)
2828 5	$(3/2)^{-}$	826 9 [‡] 8	77 10	2001 91 5/2-			Multin D + Q Holli (0,17).
2020.5	(3/2)	928 2 [‡] 9	27 13	1899 2 3/2-			
		2079.62 16	100 12	749.10 3/2	M1(+E2)	+0.09 +30-25	B(M1)(W.u.)=0.0202 11 Mult.: D(+Q) from $\gamma(\theta)$ in $(\alpha,n\gamma)$; polarity from no parity change based on L(³ He, α)=1.
2890.2	3/2-	510.8 ^{#i} 3	61 [#]	2379.46 9/2-			-
		888.2 [‡] 8	100 [‡] <i>10</i>	2001.91 5/2-			E_{γ} : other: 888.7 2 in (p,n γ).
		990.4 [‡] 9	36 [‡] 7	1899.2 3/2-			
		1537.2 [‡] 8	88 [‡] 9	1352.65 5/2-			
		2113.4 [‡] 7	51 [‡] 14	776.95 1/2-			
		2141.3 <mark>8</mark> ‡ 7	22 <mark>8</mark> ‡ 6	749.10 3/2-			
2908.1 2911.0	(5/2) ⁻ (5/2) ⁻	2159.0 [‡] 7 1353 1557 2161 2911	100 100 <i>12</i> 10 7 19 4 43 5	749.10 3/2 ⁻ 1557.26 7/2 ⁻ 1352.65 5/2 ⁻ 749.10 3/2 ⁻ 0.0 7/2 ⁻			
2948.2	5/2-,7/2-	1049	86 6	1899.2 3/2-			

11

Adopted Levels, Gammas (continued)												
γ ⁽⁵¹ Cr) (continued)												
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	Ιγ ^{&}	E_f	\mathbf{J}_{f}^{π}	Mult. ^a	δ^{a}	Comments				
2948.2	5/2-,7/2-	1391.3 2	100 6	1557.26	7/2-	M1(+E2)	-0.22 +22-26	E _γ : from (p,nγ). Mult.: D(+Q) from $\gamma(\theta)$ in (α ,nγ); polarity from no parity change				
		2948.8 2	92 6	0.0	7/2-			E_{γ} : from (p,n γ). L ₂ : other: 64 10 in (p,n γ).				
3001.7	5/2-	3001.6 [#] 3	100	0.0	7/2-	M1(+E2)	-0.07 +7-10	$B(M1)(W.u.)=5.40\times10^{-5} 6$ Mult: From $\gamma(\theta)$ and $\gamma(\text{pol})$ in $(\alpha, n\gamma)$.				
3004.4	3/2+	1002.7 [#] 4	100 5	2001.91	5/2-	E1(+M2)	+0.12 +23-19	B(E1)(W.u.)=0.00078 12 Mult : D(+Q) from 48 Ti(a pa) and comparison to PUI				
		2255.1 [#] 3	82 6	749.10	3/2-	E1(+M2)	+1.9 +18-19	B(E1)(W.u.)<6.5×10 ⁻⁵ Mult.: D(+Q) from ⁴⁸ Ti(α ,n γ) and comparison to RUL.				
3018.6	11/2-	633	32 5	2385.4	13/2-	[M1]		B(M1)(W.u.)= $0.32 + 10 - 14$ Mult : Assumed in (α .n γ)				
		1538	11 5	1480.07	11/2-	[M1]		B(M1)(W.u.)=0.0071 +23-31 Mult.: Assumed in $(\alpha, n\gamma)$.				
		1853	33 5	1164.59	9/2-	[M1]		B(M1)(W.u.)= $0.013 + 5-6$ Mult.: Assumed in $(\alpha, n\gamma)$.				
		3020.3 [#] 2	100 14	0.0	7/2-	[E2]		B(E2)(W.u.)= $2.4 + 9 - 11$ Mult.: Assumed in $(\alpha, n\gamma)$.				
3055.9	$1/2^{-}$	1157	41 11	1899.2	3/2-	(M1)		B(M1)(W.u.)=0.05 3				
		2279.2 [‡] 7	100 28	776.95	$1/2^{-}$							
		2306	44 11	749.10	3/2-							
3109.21	(7/2,9/2 ⁻)	$1107.3^{\#} 2$	89.5 "	2001.91	5/2-							
		1755.7" 7	7.9"	1352.65	5/2-							
		1944.6# 2	65.8#	1164.59	9/2-	M1(+E2)	-0.18 +27-21	B(M1)(W.u.)=0.0134 I3 Mult.: from D(+Q) to 9/2 ⁻ 1164 and comparison to RUL.				
0105.0	0.10-	3109.0 [#] 4	100 [#]	0.0	7/2-							
3125.9	3/2-	1123	35 7	2001.91	5/2-			E_{γ}, I_{γ} : from $(\alpha, n\gamma)$.				
		2348.9 5	47 7	776.95	1/2-			l_{γ} : from $(\alpha, n\gamma)$.				
		2376.7 + 5	100 9	749.10	3/2-			I_{γ} : from (α ,n γ).				
3134.8	$(3/2^{-})$	1782.2 [#] 3	100"	1352.65	5/2-							
2100 7	(17/0) =	3134.0# 7	6.4#	0.0	$7/2^{-}$	D.O						
3180.7 3204-1	(1/2) $(5/2 7/2)^{-}$	925.2 5 3204	100	2255.5	13/2 7/2-	D+Q		Numeric: if $\gamma(\theta)$ in (HI, $xn\gamma$).				
3204.1	(3/2, 7/2) 7/2 = 0/2 =	204 206 0 [#] 7	0.65#	2011.0	$(5/2)^{-}$							
5201.22	112,912	1649 8 [#] 5	18 [#]	2711.0 1557.26	(3/2) $7/2^{-}$							
		1047.0 J	10	1557.20	112							

12

 $^{51}_{24}\mathrm{Cr}_{27}$ -12

From ENSDF

 $^{51}_{24}\mathrm{Cr}_{27}$ -12

L

						$\gamma(^{51}\mathrm{Cr})$ (con	tinued)	
E _i (level)	${ m J}^{\pi}_i$	E_{γ}^{\dagger}	Ι _γ &	\mathbf{E}_{f}	${ m J}_f^\pi$	Mult. ^a	δ^a	Comments
3207.22	7/29/2-	1854.6 [#] 3	32 [#]	1352.65	5/2-			
	.,_ ,_,_	2042.5 [#] 7	100#	1164.59	9/2-	M1+E2	-0.42 +15-28	B(M1)(W.u.)=0.025 7; $B(E2)(W.u.)=2.4$ 16 Mult.: from D+Q to 9/2 ⁻ 1164 and comparison to RUL.
		3207.3 [#] 7	11.29 [#]	0.0	7/2-			
3262.6	(3/2 ⁻)	2514	100 7	749.10	3/2-	[M1,E2]		
3266.0	_	3262	72 7	0.0	$7/2^{-11/2^{-1}}$	[E2]		B(E2)(W.u.)=1.8 + 8 - 10
5200.9		2102	16 7	1164.59	$9/2^{-}$			
3344.21		$432.0^{\#}$ 7	2.17 [#]	2911.0	$(5/2)^{-}$			
		$1787 4^{\#} 3$	100 [#] 9	1557.26	5/2 7/2-			
		3343.6 [#] 4	6.5	0.0	7/2-			
3348.3		2598.9 [‡] 7	100	749.10	$3/2^{-}$			
3351.1	3/2-,5/2-,7/2-	1451	94 17	1899.2	3/2-			
		1792	100 17	1557.26	7/2-			
3447 5	13/2-	2001	91 <i>17</i> 100	1352.65	5/2 15/2 ⁻	M1(+F2)	+0.03.3	Mult : From $\gamma(\theta) \& \gamma(\text{pol})$ in $(\alpha n \gamma)$
3578.4	(11/2,13/2,15/2)	1192.0 0	100	2385.4	$13/2^{-1}$	111(+12)	10.05 5	
3722.1		2164.6 [#] 8	100 [#]	1557.26	7/2-			
		3722.7 [#] 15	9.9 <mark>#</mark>	0.0	7/2-			
3766.8	1/2-,3/2-	2990.0 [‡] 5	91 [‡] 18	776.95	$1/2^{-}$			
		3017.3 [‡] 4	100 [‡] 18	749.10	$3/2^{-}$			
3770.5	1/2-,3/2-	862.3 [‡] 6	5 [‡] 3	2908.1	$(5/2)^{-}$			
		2995 2021 2 [±] 4	45 9	7/6.95	1/2			
2016 7	$(10/2^{-})$	5021.5+4	100+ 13	749.10	$\frac{3}{2}$	$D \downarrow O$		Mult - From (III vna)
3831 37	(19/2)	$1453 4^{\#} 15$	00 ⁺	2370 /6	(17/2) $0/2^{-}$	D + Q (D E 2) ^b		
5051.57	(7/2, 7/2, 11/2)	$2273.6^{\#}3$	100#	1557.40	7/2-	$(D, E2)^{b}$		
		$2350.5^{\#}$ 6	42 [#]	1480.07	$11/2^{-}$	$(D,E2)^{b}$		
		3831.6 [#] 3	71 [#]	0.0	7/2-	$(D,E2)^{b}$		
3870.7		2706	100	1164.59	9/2-			
3900.3	$(5/2^+)$	2001 #	86	1899.2	3/2-	[E1]		B(E1)(W.u.)=8.E-5 5
		3901.9 [#] 3	100.4	0.0	7/2-	[E1]		B(E1)(W.u.)=0.00014 + 4-6
3927.5	$(5/2^+)$	1037.7^{m} 11	100^{m}	2890.2	3/2-	[E1]		B(E1)(W.u.)>0.0068
		2448.9^{nm} 10	85'''' 70#	1480.07	$11/2^{-}$	[17:1]		$D(E1)(W_{c}) > 0.1 \times 10^{-5}$
		3920" 2	12"	0.0	1/2	[EI]		$B(E1)(w.u.)>9.1\times10^{-5}$

13

From ENSDF

 $^{51}_{24}\mathrm{Cr}_{27}$ -13

L

$\gamma(^{51}Cr)$ (continued)

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	E _i (level)	${ m J}^{\pi}_i$	E_{γ}^{\dagger}	Ιγ &	$E_f \qquad J_f^{\pi}$	Mult. ^a	Comments
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3933.7	9/2 ⁻ to 15/2 ⁻	2769	100	1164.59 9/2-		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3953.2	$(5/2^+)$	2600.4 [#] 4	69 <mark>#</mark>	1352.65 5/2-	[E1]	B(E1)(W.u.)=0.00028 +7-10
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			3202	54 8	749.10 3/2	[E1]	B(E1)(W.u.)=0.00012 + 4-5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			3934.4 0	100 8	0.0 7/2	[EI]	B(E1)(W.u.)=0.00012 + 3 - 4 E_{γ} : from (p,n γ).
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3971.2		845.2 [‡] 8	100	3125.9 3/2-		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3977.4	$3/2^+, 5/2^+$	2419	35 17	1557.26 7/2-	[E1]	B(E1)(W.u.)>0.00018
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			2624	100 19	$1352.65 5/2^{-}$	[E1]	B(E1)(W,u) > 0.00040 B(E1)(W,u) > 0.00012
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3984.8	$(5/2^+)$	983	38 12 70 18	$749.10 \ 5/2$ 3001 7 $5/2^{-1}$	[E1] [F1]	B(E1)(W.u.) > 0.00015 B(E1)(W.u.) = 0.0073 + 25 - 27
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5701.0	(3/2)	1982	36 14	$2001.91 \ 5/2^{-1}$	[E1]	B(E1)(W.u.)=0.00046 + 21 - 22
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			2428	20 9	1557.26 7/2-	[E1]	B(E1)(W.u.)=0.00014 +7-8
			3984.3 <i>13</i>	100 18	$0.0 7/2^{-}$	[E1]	B(E1)(W.u.)=0.00016 1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4005.2	510- 710-	2001		2001.01 5/2-		E_{γ} : from (p,n γ).
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4005.2	5/2 ,1/2	2001		$2001.91 \ 5/2$ 1800 2 $3/2^{-1}$		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1006.6		2100	100 <mark>h</mark> #	1099.2 5/2 $1557.26 7/2^{-1}$		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4000.0		2446.9 10	100	0.0 7/2		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4017.2	$(3/2^{-} 5/2 7/2^{-})$	4000.4 9 3267	100	$749\ 10\ 3/2^{-1}$		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1017.2	(3/2 ,3/2,7/2)	4018		0.0 7/2-		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4020	9/2 ⁻ to 15/2 ⁻	3281	100	749.10 3/2-		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4040.0	$1/2^{-}$	913.2 [‡] 9	11 [‡] 3	3125.9 3/2-		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			2141.3 <mark>8</mark> ‡ 7	22 <mark>8</mark> ‡ 6	1899.2 3/2-		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			3262.8 [‡] 4	100 [‡] <i>13</i>	776.95 1/2-		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			3290.8 [‡] 5	35 [‡] 11	749.10 3/2-		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4056		2156	47 18	1899.2 3/2-		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			2703	100 18	1352.65 5/2-		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	40/1.2	3/2+,5/2+	2513		1557.26 7/2		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			4071 2		$749.10 \ 5/2$ 0.0 $7/2^{-1}$		$F : from (n n \gamma)$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4106.7		1105	69 20	$3001.7 5/2^{-1}$		L_{γ} . Hom (p,hy).
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			2942	100 20	1164.59 9/2-		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			4108 ^{#i} 2		0.0 7/2-		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4111.0		1350		2762.6 1/2+		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			2109		2001.91 5/2-		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4110.1		3360 2117	100	$749.10 \ 3/2^{-1}$		
2785 100 15 1352.65 5/2-	4136.7		1373	18 1.5	2762.6 1/2+		
			2785	100 15	1352.65 5/2-		

14

$\gamma(^{51}Cr)$ (continued)

E _i (level)	\mathbf{J}_i^π	E_{γ}^{\dagger}	Ι _γ &	E_f	J_f^π	Mult. ^a	Comments
4155 4161.5	7/2+,9/2+	4155 [#] 3 2603	100 61 <i>16</i>	0.0 1557.26	7/2 ⁻ 7/2 ⁻		
4181.7		2998 3017	100 <i>16</i> 100	1164.59 1164.59	9/2 ⁻ 9/2 ⁻		
4189.2 4239.2	3/2+,5/2+	4190 <i>3</i> 4239	100 100	0.0	7/2 ⁻ 7/2 ⁻		E_{γ} : from (p,n γ).
4254.2		4254	100	0.0	7/2-		
4273		4273# 4	100#	0.0	7/2-		
4289.3	$1/2^+$	3512.2 [‡] 4	100	776.95	$1/2^{-}$		
4354.6 4405.6	(1/2 ,3/2)	1592 1643	100	2762.6	$1/2^+$ $1/2^+$		
4560.9	(5/2)	3207.5 [‡] 7	100	1352.65	5/2-		
4637.0	3/2	1808.8 [‡] 7	23 [‡] 6	2828.5	(3/2)-		
		3284.2 [‡] 8	19 [‡] 6	1352.65	5/2-		
		3859.8 [‡] 4	100 [‡] 21	776.95	$1/2^{-}$		
4769.6	1/2-,3/2-	1002.1 [#] 9	28 7	3766.8	1/2-,3/2-		
		4020.5+ 4	100 30	749.10	3/2-		
4833.6		4833.24 4	100	0.0	7/2-		
5205.2	1/2-	3305.8+ 7	100	1899.2	3/2-		
5563	$(21/2^{-})$	1746	100	3816.7	$(19/2^{-})$		
5668.2	(1/2)	834.1 ⁺ 8	100 + 23	4833.6	(5/2)		
		4891 4 5	43* 15 81 [‡] 16	4300.9	(3/2) $1/2^{-}$		
5711	$(23/2^{-})$	1894 [@]	100	3816.7	$(19/2^{-})$	0	Mult : From (HI $xn\gamma$)
6162	$(21/2, 23/2^{-})$	2345 [@]	100	3816.7	$(19/2^{-})$	×	
6894	(23/2,25/2 ⁻)	1331@	100	5563	(21/2 ⁻)		
7208.4	$(1/2)^{-}$	5206.1 [‡] 6	100	2001.91	5/2-		
7247.9	$(1/2, 3/2, 5/2^+)$	3276.8 [‡] 7	61 16	3971.2			
		3898.9 [‡] 5	100 23	3348.3			
8485	$(25/2,27/2^{-})$	2774 [@]	100	5711	$(23/2^{-})$ $(1/2, 2/2, 5/2^{+})$		
9201.03	1/2	2015.5 0	0.3 1	7208.4	$(1/2, 3/2, 3/2^{+})$ $(1/2)^{-}$		
		3305.8 ^{<i>i</i>} 7	0.23 13	5950	$(1/2)^{-}$		
		3593.4 4	3.0 7	5668.2	(1/2)-		
		4057.4 5	0.47 13	5205.2	$1/2^{-}$		

15

From ENSDF

$\gamma(^{51}Cr)$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	Ι _γ &	E_f	${ m J}_f^\pi$	E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	Ι _γ &	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}
9261.63	1/2+	4491.5 4 4625.0 4 4971.6 7 5222.0 4 5490.3 5 5494.5 3 6135.9 4	2.1 4 3.7 7 1.4 3 7.7 10 5.9 6 6.7 7 30.0 7	4769.6 4637.0 4289.3 4040.0 3770.5 3766.8 3125.9	1/2 ⁻ ,3/2 ⁻ 3/2 1/2 ⁺ 1/2 ⁻ 1/2 ⁻ ,3/2 ⁻ 1/2 ⁻ ,3/2 ⁻ 3/2 ⁻	9261.63	1/2+	6206.3 5 6371.6 5 6433.7 8 7362.6 6 8484.2 7 8512.2 7	0.7 2 13.3 <i>13</i> 0.33 <i>17</i> 41.4 4 87 <i>10</i> 100.0 <i>13</i>	3055.9 2890.2 2828.5 1899.2 776.95 749.10	$ \frac{1/2^{-}}{3/2^{-}} \\ \frac{(3/2)^{-}}{3/2^{-}} \\ \frac{1/2^{-}}{3/2^{-}} \\ \frac{3}{2^{-}} $

[†] From ⁵¹Mn ε decay and ⁴⁸Ti(α ,n γ), except as noted.

[‡] From ⁵⁰Cr(n,γ), (pol n,γ).

From ${}^{51}V(p,n\gamma)$.

[@] From (HI, $xn\gamma$).

16

& Relative photon branching from each level. Values are weighted average of all available sources, except as noted.

^{*a*} From ⁴⁸Ti(α ,n γ), except as noted.

^b From comparison to RUL.

^{*c*} From $(\alpha, n\gamma)$ and (n, γ) .

^d From $(\alpha, n\gamma)$. The 1539 γ and 2704 γ are multiply placed in $(p, n\gamma)$.

^e I γ =151 6 in (p,n γ); therefore, part of 2379 γ in (p,n γ) probably belongs elsewhere.

f Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

^{*g*} Multiply placed with undivided intensity.

^h Multiply placed with intensity suitably divided.

^{*i*} Placement of transition in the level scheme is uncertain.

Legend

 $--- \rightarrow \gamma$ Decay (Uncertain)

Level Scheme

 $^{51}_{24}Cr_{27}$

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $^{51}_{24}{\rm Cr}_{27}$

Level Scheme (continued)

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given @ Multiply placed: intensity suitably divided

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given @ Multiply placed: intensity suitably divided

 $^{51}_{24}{\rm Cr}_{27}$

 $^{51}_{24}{
m Cr}_{27}$

 $^{51}_{24}{\rm Cr}_{27}$