⁵¹V(d,³He),(pol d,³He) 1988Kr02,1986FuZY

History							
Туре	Author	Citation	Literature Cutoff Date				
Full Evaluation	Jun Chen and Balraj Singh	NDS 157, 1 (2019)	15-Apr-2019				

$J^{\pi}(^{51}V \text{ g.s.})=7/2^{-}.$

1988Kr02: (d,³He) E=52.9 MeV beam from the KVI in Groningen. Measured $\sigma(\theta(c.m)\approx5^{\circ}-40^{\circ})$; magnetic spectrograph, position-sensitive detectors, scintillation detector, FWHM \approx 25 keV. DWBA analysis.

1986FuZY: (pol d,³He) E=56 MeV at RCNP. Measured $\sigma(\theta)$, $A_y(\theta)$, $\theta(c.m.)\approx 6^{\circ}-32^{\circ}$; magnetic spectrometer, position-sensitive proportional counter and ΔE - ΔE -E telescope (proportional counter, scintillator), beam polarization=80-83%.

Others:

1976Cr01: (d,³He),E=30,80 MeV. Measured $\sigma(E,\theta)$, deduced L- values and spectroscopic factors for ground and first 2⁺, 4⁺ and 6⁺ states.

1968Ne03: (d,³He),E=34.4 MeV. Measured $\sigma(E,\theta)$ for eight levels up to 6.16 MeV. Deduced L values and spectroscopic factors. FWHM=85-125 keV.

1967Hi09: (d,³He),E=52 MeV. Measured $\sigma(E,\theta)$ for nine levels up to 7650 keV. FWHM=200-400 keV. Deduced L values and spectroscopic factors.

All data are from 1988Kr02, except as noted.

 $\Sigma C^2 S(1f_{7/2})$ is similar to that found in (e,e'p) while $\Sigma C^2 S(L=0; E_x < 8 \text{ MeV})$ and $\Sigma C^2 S(L=2; E_x < 8 \text{ MeV})$ are not. See (e,e'p) for additional discussion.

E(level) [†]	L	C^2S^{\ddagger}	Comments
0#	3 ^a	0.41	E(level): 0 2. L=3, $C^2S=0.74$ (1968Ne03). L=3, S=0.73 (1967Hi09).
1552 [#] 4	3 ^{ab}	0.22 ^{@b}	$E=1560, L=3, C^2S=0.37 (1968Ne03).$ E=1550, L=3, S=0.39 (1967Hi09).
2675 [#] 5	3 ^{<i>ab</i>}	0.41 ^{@b}	$E=2680, L=3, C^2S=0.75 (1968Ne03).$ E=2670, L=3, S=0.64 (1967Hi09).
3199 [#] 6	3 ^a	0.65 [@]	E=3200, L=3, C ² S=1.14 (1968Ne03). E=3220, L=3, S=1.05 (1967Hi09).
4147 7	0	0.008	
4177 7	3	0.047	
4317 7	3	$0.022^{@}$	
4409 [#] 7	0	0.26 ^{&}	E=4450, L=0, C ² S=0.77 (1968Ne03). E=4450 <i>100</i> , L=0, S=0.63 (1967Hi09).
4787 7	3	0.042	
4928 8	2	0.051	
5191 8	0+2	0.006+0.019 ^{&}	
5333 8	2	0.71	
5407 [#] 8	0+2	0.064+0.40 ^{&}	E=5460, L=2, C ² S=1.67 (1968Ne03). E=4450 <i>100</i> , L=2, S=1.90 (1967Hi09).
5528 8	0+2	0.013+0.069 ^{&}	
5771 9	0	0.046 ^{&}	
5795 9	2	0.43	
5880 9	3	0.013 [@]	$E=5890, L=2, C^2S=0.82 (1968Ne03).$
5945 9	2	0.028	
6041 9	0	0.42 ^{&}	E=6050 150, L=0, S=1.10 (1967Hi09).
6137 9	3	0.021	$E=6160, L=0, C^2S=1.03 (1968Ne03).$
6191 9	3	0.016 [@]	
6248 9	3	0.013@	

Continued on next page (footnotes at end of table)

⁵¹V(d,³He),(pol d,³He) **1988Kr02,1986FuZY** (continued)

⁵⁰Ti Levels (continued)

E(level) [†]	L	C^2S^{\ddagger}	Comments
6310 9	2	0.14	
6386 9	2	0.36	
6400 9	0	0.035 <mark>&</mark>	
6461 9	2	0.023	E=6450 150, L=2, S=1.40 (1967Hi09).
6517 9	1	0.009	
6583 10	2	0.18	
6606 [#] 10	2	0.073	
6665 10	2	0.027	
6716 <i>10</i>	1	0.006	
6770 10	3	0.023@	
6847 10	2	0.067	
6963 10	0	0.017 <mark>&</mark>	
7037 10	1	0.007	
7083 10	2	0.038	
7605 [°] 11	$(0)^{C}$	С	E=7650 200, L=2, S=1.10 (1967Hi09).
7697 ^{#c} 11	(0) ^C	С	

[†] Uncertainties estimated by evaluators from statement by 1988Kr02 that the uncertainties range from 2 keV at 0 MeV to 10 keV at 7 MeV.

 ‡ C²S=(2j+1)[d σ /d Ω (exp)]/(N[d σ /d Ω (DWBA)]), where N=2.95. Separation energy method. See 1988Kr02 for results when the rms radius is kept constant.

[#] Also identified by 1986FuZY.

[@] $\Sigma C^2 S=1.89$ is less than expected. If the $1f_{7/2}$ orbital radius is fixed at 4.10 fm, $\Sigma C^2 S=1.63$ which is about two thirds of that expected from extensive shell model calculations (1988Kr02).

 $\& \Sigma C^2 S=0.87$ is less than half that expected from extensive shell model calculations (1988Kr02).

^{*a*} Shape of $A_y(\theta)$ very similar for these states (1986FuZY).

^b no evidence of L=1 admixture ($C^2S < 0.01$).

^c Observed only at forward angles. Parentheses added by the evaluators.