⁴⁹Ti(d,pγ) **1984So08**

History							
Туре	Author	Citation	Literature Cutoff Date				
Full Evaluation	Jun Chen and Balraj Singh	NDS 157, 1 (2019)	15-Apr-2019				

⁵⁰Ti Levels

 $J^{\pi}(^{49}\text{Ti g.s.})=7/2^{-}$.

1984So08: E(d)=6 MeV beam from the CN van de Graaff accelerator of the Laboratori Nazionali di Legnaro. Measured

pγ-coincidences and $T_{1/2}$ (DSAM); Si(θ =±45°) for p, Ge(HP)(θ =90°) for γ. See also comment on excitation energies in (d,p).

E(level) [†]	J ^π @	T _{1/2} ‡	E(level) [†]	T _{1/2} ‡	E(level) [†]	T _{1/2} ‡
0.0	0^{+}		4309.7? 12	<2.8 ns	5946.1 7	19 fs 5
1553.7 5	2+	<2.8 ns	4409.9 7	<2.8 ns	6122.9 6	38 fs +12-9
2674.8 5		<2.8 ns	4788.8 11	<13.9 fs	6379.3 7	<19 fs
3198.1 6		<2.8 ns	4880.4 6	215 fs +45-35	6481.0 7	<17 fs
4146.9 6		33 fs +7-5	5185.7 6	<6.9 fs	6520.5 7	7.6 fs +35-28
4171.8 5	#	>832 fs	5379.6 6	33 fs +9-7	6710.0 6	11 fs 5
4172.3 6	#	<11.1 fs	5836.9 8	26 fs +19-14		

[†] From a least-squares fit to $E\gamma$ data.

[‡] From DSAM, except for $T_{1/2}$ < 2.8 ns which are from time distributions of prompt py-coincidences.

1984So08 suggest that L=1 for the unresolved 4180 doublet in (d,p) may be assigned to both these states since in their work the population of both states is similar (the lower one is populated about twice as much as the upper one) and the presence of a sizeable contribution from a different L value would probably have been observed.

[@] From Adopted Levels.

E _i (level)	\mathbf{J}_i^{π}	Eγ	I_{γ}^{\dagger}	$E_f J_f^{\pi}$	Mult. [‡]	E _i (level)	Eγ	I_{γ}^{\dagger}	E_f	Mult. [‡]
1553.7	2^{+}	1553.7 5	100	$0.0 \ 0^+$		5946.1	760.5 4	≈10	5185.7	D
2674.8		1121.1 5	100	1553.7 2+			1636 [#] 1	≈ 10	4309.7?	D,E2
3198.1		523.5 5	100	2674.8	D,E2		1799 [#] 1	≈ 10	4146.9	D,E2
4146.9		1472.1 2	100	2674.8	D,E2		3270.5 10	≈ 70	2674.8	D,E2
4171.8		1497.1 2	50	2674.8		6122.9	1242.4 2	>70	4880.4	D,E2
		2618.0 <i>3</i>	50	1553.7 2+			1975.8 6	<15	4146.9	
4172.3		2618.6 4	100	1553.7 2+	D,E2		2925 1	<10	3198.1	
4309.7?		2756 [#] 1		1553.7 2+			3448 [#] 1	<10	2674.8	
4409.9		2856.0 10	100	1553.7 2+		6379.3	1498.8 <i>4</i>	35	4880.4	D,E2
4788.8		3235 1	100	1553.7 2+	D,E2		2232.3 7	35	4146.9	D,E2
4880.4		1682.3 4	12	3198.1	D,E2		3181 <i>I</i>	30	3198.1	D,E2
		2205.6 3	88	2674.8	D,E2	6481.0	2309.1 4	100	4171.8	D,Q
5185.7		1039 [#] 1	<5	4146.9	D,E2	6520.5	2348.5 7	15	4172.3	D,E2
		2510.8 <i>3</i>	80	2674.8	D,E2		2373.3 6	15	4146.9	D,E2
		3631 <i>I</i>	20	1553.7 2+	D,E2		3845.5 10	70	2674.8	D,E2
5379.6		1207.7 <i>3</i>	40	4171.8	D,E2	6710.0	1524.2 2	30	5185.7	D,E2
		2704.8 4	60	2674.8	D,E2		2300.0 4	35	4409.9	D,E2
5836.9		1690.0 7	55	4146.9	D,Q		2538.5 4	35	4171.8	D,E2
		3162 1	45	2674.8	D,Q					

$\gamma(^{50}\text{Ti})$

[†] % photon branching ratios from each level. Possible angular correlation effects on I γ were not taken into account.

[‡] From comparison to RUL, except as noted. These assignments differ from those of 1984So08 for the 1207.7, 1242.4, 1472.1,

⁴⁹Ti(d,pγ) **1984So08** (continued)

γ (⁵⁰Ti) (continued)

1498.8, and 1524.2 γ rays since 1984So08 used the RUL of 1979En04 where RUL(E2)=100 compared to RUL(E2)=300 from the introduction to Nuclear Data Sheets. These differences do not affect the J^{π} values deduced from the multipolarities. # Placement of transition in the level scheme is uncertain.

3