50 Ca β^- decay (13.45 s) 2017Ga25,1984Al18

History								
Туре	Author	Citation	Literature Cutoff Date					
Full Evaluation	Jun Chen and Balraj Singh	NDS 157, 1 (2019)	15-Apr-2019					

Parent: ⁵⁰Ca: E=0.0; $J^{\pi}=0^+$; $T_{1/2}=13.45$ s 5; $Q(\beta^-)=4958$ 15; $\%\beta^-$ decay=100.0

 50 Ca-T_{1/2}: From Adopted Levels, where value is adopted from 2017Ga25.

2017Ga25: ⁵⁰Ca was produced by spallation reaction using 500 MeV proton beam from TRIUMF cyclotron on a 22.49 g/cm² thick Ta target. Selected ions were ionized, accelerated to 20 keV, mass separated and delivered to the experimental station. Measured $E\gamma$, $I\gamma$, $\gamma\gamma$ -coin using GRIFFIN array of 15 HPGe clover detectors and five 1 in x 1 in LaBr₃(Ce) scintillators for fast timing. The β^- particles were detected by plastic scintillator array SCEPTAR. Deduced levels, γ -ray branching ratios, level lifetimes, and transition strengths. Comparison with shell-model calculations, with special emphasis on B(M3) transition strengths.

1984A118: measured Ey, Iy, $\beta\gamma(t)$; pneumatic transfer system used for radioactive ⁵⁰Ca source.

Others: 1970Wa29, 1968Ch11.

1970Wa29: measured $T_{1/2}$, $E\gamma$, $I\gamma$.

1968Ch11: measured $E\gamma$, $I\gamma$.

1964Sh14: first identification of ⁵⁰Ca nuclide. Measured E γ , I γ . Two γ rays of 72 and 258 keV reported using scintillation detector, and placed in a $\gamma\gamma$ cascade.

⁵⁰ Sc I	Levels
--------------------	--------

E(level) [†]	J ^{π‡}	T _{1/2}	Comments
0.0	5+	102.5 [‡] s 5	
256.895 10	2+	0.35 [‡] s 4	%IT=99.5 5; $\%\beta^- <1.0$ (2017Ga25) J ^{π} : spin=2 from (1519 γ)(71 γ)(θ) (2017Ga25).
328.447 12	3+	<600 ps	Upper limit of $\%\beta^{-}$ estimated in 2017Ga25 from examining γ -intensities in ⁵⁰ Sc and ⁵⁰ Ti. J ^{π} : spin=3 from (1519 γ)(71 γ)(θ) (2017Ga25). T _{1/2} : upper limit is based on the sensitivity of the experimental setup, as no non-prompt component was seen by LaBr ₃ detectors (2017Ga25). Other: <10 ns from $\beta\gamma$ (t)
1847.772 20	1+	<2 ns	(1984A118, authors obtained 5 ns 2, but cited an upper limit of 10 ns as possible systematic uncertainties were not properly monitored). $T_{1/2}$: upper limit obtained using generalized centroid difference method in $\beta\gamma$ -coin data (2017Ga25). Other: <10 ns from $\beta\gamma$ (t) (1984A118, authors obtained 5 ns 2, but cited an upper limit of 10 ns as possible systematic uncertainties were not properly monitored).

[†] From a least-squares fit to γ -ray energies.

[‡] From Adopted Levels.

β^- radiations

The β feeding to 257 and 328 levels from higher levels (including those from known (1⁺) states) is estimated as <0.75% (1984Al18).

E(decay)	E(level)	$I\beta^{-T}$	Log ft	Comments
(3110 15)	1847.772	99 1	4.12 1	av Eβ=1349.9 73
				I β ⁻ : γ feeding from higher states to this level was estimated as <1% (1984Al18).

[†] Absolute intensity per 100 decays.

⁵⁰Ca-Q(β^{-}): From 2017Wa10.

⁵⁰Ca β⁻ decay (13.45 s) 2017Ga25,1984Al18 (continued)

 $\gamma(^{50}\mathrm{Sc})$

I γ normalization, I(γ +ce) normalization: from $\Sigma I\gamma$ (from 1848)=99 *1*. Lower lying states will not be directly fed ($\Delta J^{\pi} \ge 2$,no). Gamma feeding from higher states to observed states estimated to be <2% by 1984Al18.

E_{γ}^{\dagger}	$I_{\gamma}^{@}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [#]	$\delta^{\#}$	α ^{&}	Comments
71.552 5	54.6 50	328.447	3+	256.895	2+	M1(+E2)	+0.015 25	0.0386 17	α(K)=0.0350 15; α(L)=0.00319 14; α(M)=0.000395 17; α(N)=2.16×10 ⁻⁵ 9 E _γ : 72.8042 8 (1967Be65) from Kα ₂ x ray of Pb was used as reference (1984A118); 71.54 20 (1970Wa29); 72 1 (1968Ch11). I _γ : weighted average of 58.4 60 (2017Ga25) and 52 5 (deduced from I(γ+ce)=54 5 and α(71γ,M1)=0.0396 in 1984A118). δ: from (1519γ)(71γ)(θ) (2017Ga25). Other: <0.5 from α(exp)=0.13 +13-11 deduced by evaluators from intensity balance.
256.894 10	99.4 20	256.895	2+	0.0	5+	(M3)		0.0356	$\alpha(K)=0.0321 5; \alpha(L)=0.00306$ $5; \alpha(M)=0.000378 6;$ $\alpha(N)=2.02\times10^{-5} 3$ $E_{\gamma}: 264.0755 8 (1979He19)$ from decay of ¹⁸² Ta used as reference, supplemented by lines from decays of ¹³³ Ba and ¹⁵² Eu (1984A118); 256.94 <i>10</i> (1970Wa29); 257 <i>1</i> (1968Ch11). $I_{\gamma}:$ weighted average of 100 2 (2017Ga25) and 98 <i>3</i> (deduced from I(γ +ce)=102 <i>3</i> and $\alpha(257\gamma,M3)$ =0.0366 in 1984A118)
328	0.46 5	328.447	3+	0.0	5+				$E_{\gamma}I_{\gamma}$: from 2017Ga25. In 1984A118, only an upper limit of 0.7 for I γ was given.
1519.300 [‡] 20	61.8 8	1847.772	1+	328.447	3+				E _γ : 1519.44 <i>30</i> (1970Wa29); 1519 <i>I</i> (1968Ch11). I _γ : weighted average of 59.6 <i>17</i> (2017Ga25) and 62.1 <i>6</i> (1984A118).
1590.850 [‡] <i>30</i>	37.5 7	1847.772	1+	256.895	2+				E _γ : 1591.00 <i>30</i> (1970Wa29); 1591 <i>I</i> (1968Ch11). I _γ : weighted average of 36.3 <i>10</i> (2017Ga25) and 37.9 <i>6</i> (1984A118).

[†] From 1984Al18, except where noted. Authors used different reference sources whose $E\gamma$ values were known precisely, and final $E\gamma$ values were weighted averages of three runs for 71.6 γ and 256.9 γ , and seven runs for 1519.3 and 1519.8 γ rays. [‡] $E\gamma$ =1562.302 5 (1979He19) from the decay of ^{110m}Ag was used as reference (1984Al18).

Continued on next page (footnotes at end of table)

$^{50}\text{Ca}\,\beta^-$ decay (13.45 s) 2017Ga25,1984Al18 (continued)

$\gamma(^{50}Sc)$ (continued)

[#] From $\gamma\gamma(\theta)$ in 2017Ga25 and RUL. The same values are adopted in Adopted Levels. [@] For absolute intensity per 100 decays, multiply by 0.997 *15*.

& Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

⁵⁰Ca β^- decay (13.45 s) 2017Ga25,1984Al18

Decay Scheme

⁵⁰₂₁Sc₂₉