Adopted Levels, Gammas

	Hist	ory	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Jun Chen and Balraj Singh	NDS 157, 1 (2019)	15-Apr-2019

 $Q(\beta^-)=6884$ 15; S(n)=6057 15; S(p)=10537 15; $Q(\alpha)=-11558$ 15 2017Wa10

 $S(2n)=16186 \ 16, \ S(2p)=26841 \ 15 \ (2017Wa10).$

Theory references: consult the NSR database (www.nndc.bnl.gov/nsr/) for 20 references dealing with various aspects of nuclear structure.

A tentative 22-min isomeric activity in ⁵⁰Sc proposed by 1959Po64 was not confirmed in later studies.

⁵⁰Sc Levels

Cross Reference (XREF) Flags

			$ \begin{array}{ccc} A & 50 \\ B & 50 \\ C & 48 \\ \end{array} $	$\begin{array}{rcl} Ca \ \beta^{-} \ decay \ (13.45 \ s) & D & {}^{48} Ca(\alpha, d) \\ Sc \ IT \ decay \ (0.35 \ s) & E & {}^{48} Ca({}^{16} O, {}^{14} N) \\ Ca({}^{3} He, p) & F & {}^{50} Ti(t, {}^{3} He) \end{array}$				
E(level) [†]	J ^π @	T _{1/2}	XREF	Comments				
0.0	5+	102.5 s 5	ABCDEF	$%β^-=100$ J ^π : L(t, ³ He)=4+6; allowed $β^-$ feeding to 6 ⁺ (log <i>ft</i> =5.4); L(³ He,p)=L($α$,d)=4. T _{1/2} : from 1970Wa29 (1121 $γ$ decay curve, main uncertainty is systematic, as the statistical uncertainty is stated by authors only as 0.2 s). Others: 1.72 min 4 (1963Ka16), 1.80 min 20 (1959Po64), 1.74 min 4 (1955Mo71), 1963Ch03. Previous values are in agreement but much less precise as compared to that in 1970Wa29. Measured strong absorption radii=1.43 fm ² 10 at 40.57 MeV/nucleon ⁵⁰ Sc beam, 1.39 fm ² 8 at 90 MeV/nucleon (1999Ai02), 1.07 fm ² 7 at 62.2				
256.895 10	2+	0.35 s 4	ABCD F	%IT=99.5 5; %β ⁻ <1.0 (2017Ga25) J ^π : spin=2 from (1519γ)(71γ)(θ) in β ⁻ decay (2017Ga25); L(³ He,p)=2. T _{1/2} : from γ(t) in IT decay. Upper limit of %β ⁻ estimated in 2017Ga25 in ⁵⁰ Ca β ⁻ decay study from examining γ-intensities in ⁵⁰ Sc and ⁵⁰ Ti. %IT,%β ⁻ : others: Iβ(to ⁵⁰ Ti 1554)<2.5% from ⁵⁰ Ti 1554γ, <5% from βγ=coin (1984A118)				
328.447 12	3+	<600 ps	A CDEF	XREF: C(338). J^{π} : spin=3 from (1519 γ)(71 γ)(θ) in β^{-} decay (2017Ga25); L(³ He,p)=2; and L(t, ³ He)=2+4. T _{1/2} : from $\gamma\gamma$ (t) in β^{-} decay (2017Ga25). Other: <10 ns from $\beta\gamma$ (t) (1984A118)				
757 6	$(4)^+$		CDEF	J^{π} : L(³ He,p)=4; L(t, ³ He)=4 is consistent with $\sigma(\theta)$ for J=4.				
1847.772 20	1+	<2 ns	A CDEF	J ^{π} : L(α ,d)=0 from 0 ⁺ ; L(³ He,p)=0+2 from 0 ⁺ ; allowed β^{-} feeding from 0 ⁺ parent (log <i>ft</i> =4.1). T _{1/2} : from $\beta\gamma$ (t) in β^{-} decay (2017Ga25) using generalized centroid difference method. Other: <10 ns from $\beta\gamma$ (t) (1084A118)				
2225 5	2+,3+		CD F	J^{π} : L(³ He,p)=2; L(t, ³ He)=2 or 2+4 is consistent with $\sigma(\theta)$, but not L=0+2 for J^{π} =1 ⁺ .				
2326 6	$(3)^{+}$		CD F	J^{π} : L(³ He,p)=4; L(t, ³ He)=2+4 is consistent with $\sigma(\theta)$ for J=3.				
2527 [‡] 10	(1)		F	J^{π} : L(t, ³ He)=1 or 0+2 consistent with $\sigma(\theta)$ for J=1.				
2614 [‡] 10	(1 ⁺)		F	J ^{π} : L(t, ³ He)=0+2 consistent with $\sigma(\theta)$ for J=1.				
3028 [‡] 15			F					
3089 5	$(0)^{+}$		CD F	XREF: D(?)F(?). E(level),J ^{π} : L(³ He,p)=0; possible anti-analog state.				
3259 ^{‡#} 6	$1^+, 2^+, 3^+$		Cd F	J^{π} : L(³ He,p)=2.				
			G					

Continued on next page (footnotes at end of table)

Adopted Levels, Gammas (continued)

⁵⁰Sc Levels (continued)

E(level) [†]	J ^π @	XREF	Comments
3287 ^{‡#} 5	$1^+.2^+.3^+$	Cd F	J^{π} : L(³ He,p)=2.
3355 \$ 15	- ,_ ,=	d F	$\cdots = (\cdots, p) = \cdots$
3385 15		Cd F	
$2500^{\pm 10}$			
3500*** 20		C F	
3556+" 15		F	
3611+# 15		C F	
3681 5	1+	C F	XREF: F(?).
27219 10		~	J^{n} : L(³ He,p)=0+2.
3/31? 10	1+	C	
3927 13	1'	CD	J^{n} : L(³ He,p)=0+2.
5950-20 4125-20	1+ 2+ 2+	C	$\pi_{1} + \frac{1}{2} (\frac{3}{2} \ln 2) = 2$
4155 20	1, 2, 3 1+2+2+	C d	J^{-1} : L($\Pi e, p$)=2.
4232 20	1, 2, 3 1+2+2+	Cu Cd	J^{-1} : L($\Pi e, p$)=2.
4511 15	1, 2, 3 1+2+2+	Cu	J^{-1} : L($\Pi e, p$)=2.
4430 13	1 ,2 ,5	CD C	J'. L(He,p)=2.
4590? 20		c	
4638 6	1+	c	J^{π} : L(³ He n)=0+2.
4660 20	-	č	
4729? 20		C	
4820 20	$1^+, 2^+, 3^+$	С	J^{π} : L(³ He,p)=2.
4876 6	1+	С	J^{π} : L(³ He,p)=0+2.
4976 <i>6</i>	1+	С	J^{π} : L(³ He,p)=0+2.
5072 8	$1^+, 2^+, 3^+$	С	J^{π} : L(³ He,p)=2.
5135 20		С	
5195 20		C	
5265 20	1+ 0+ 2+	Cd	XREF: d(5320).
5558 15	1,2,3,	Ca	$XKEF: \ \mathbf{d}(5520).$
5420 12	1+ 0+ 2+	~	$J^{\pi}: L({}^{3}He,p)=2.$
5430 12	1,2,3,	C	$J^{*}: L({}^{\circ}He,p)=2.$
5600 13	1+ 2+ 3+	C	I^{π} : I (³ He n)-2
5600 15	$(0^+, 1^+)$	C	J^{π} : L(10,p)=2.
5810 20	$(0^{+},1^{-})$	C	I^{π} : L(10,p)-(0). I^{π} : L(³ He p)-(2+4)
5853 30	1+ 2+ 3+	c	$I^{\pi}: L^{(3He n)-2}$
6014 30	$3^{+} 4^{+} 5^{+}$	С	$I^{\pi}: L(AC,p)=2.$
6118 30	$1^{+} 2^{+} 3^{+}$	CD	$I^{\pi}: L({}^{3}\text{He n})=2$
6285 30	$1^{+},2^{+},3^{+}$	C	$I^{\pi}: L({}^{3}\text{He n})=2$
6447 30	1,2,5	c	$r = (10, p)^{-2}$
6618 30		Č	
8.25×10 ³ 3		D	
11195 20	(0^+)	С	J^{π} : L(³ He,p)=(0); IAS of ⁵⁰ Ca g.s.

[†] From (³He,p), except for those states connected by gammas, as indicated in XREF, or the 3388 state where E(level) is from $(t, {}^{3}\text{He})$.

[‡] Levels below 2330 keV in $(t, {}^{3}\text{He})$ were assigned by 1985Aj03 on the basis of the intensities and previously known levels. According to the authors, positive assignments of states to ${}^{50}\text{Sc}$ is difficult above the 2327 group, since ${}^{48}\text{Ti}$ was also present in the target material and some of these states could belong to ${}^{48}\text{Sc}$.

[#] Unresolved groups of states observed at 3250, 3300, 3475, 3556, and 3598 in $(t, {}^{3}\text{He})$.

[@] From L-transfers in ⁴⁸Ca(³He,p), ⁴⁸Ca(α ,d) and ⁵⁰Ti(t,³He), as well as comparison of experimental $\sigma(\theta)$ in (t,³He) with coupled-channel Born approximation (CCBA) calculations. Exceptions are noted. In all the particle-transfer experiments, target J^{π}

Continued on next page (footnotes at end of table)

Adopted Levels, Gammas (continued)

⁵⁰Sc Levels (continued)

is 0⁺ for the ground states, which imply J^{π} values as: 0⁺,1⁺ for L=1; 0⁻,1⁻,2⁻ for L=1; 1⁺,2⁺,3⁺ for L=2; 3⁺,4⁺,5⁺ for L=4; 5⁺,6⁺,7⁺ for L=6; 1⁺ for L=0+2; 3⁺ for L=2+4; and 5⁺ for L=4+6. No L=3 cases seem to have been reported in any of these experiments.

γ ⁽⁵⁰ Sc)									
E _i (level)	\mathbf{J}_i^{π}	${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\dagger}	E_f J	\mathbf{J}_{f}^{π}	Mult. [†]	δ^{\dagger}	α^{\ddagger}	Comments
256.895	2+	256.894 10	100	0.0 5	5+	(M3)		0.0356	B(M3)(W.u.)=13.4 <i>16</i> Mult.: B(M3)(W.u.) exceeds somewhat RUL.
328.447	3+	71.552 5	100	256.895 2	2+	M1(+E2)	+0.015 25	0.0386 17	B(M1)(W.u.)>0.096 Mult.: from $\alpha(\exp)$ deduced from intensity balance consideration and $\gamma\gamma(\theta)$ in β^- decay (2017Ga25). δ : from $\gamma\gamma(\theta)$ in β^- decay (2017Ga25). Other: <0.5 from $\alpha(\exp)$.
1847.772	1+	328 1519.30 2 1590.85 <i>3</i>	0.84 9 100.0 <i>13</i> 60.7 <i>11</i>	0.0 5 328.447 3 256.895 2	5+ 3+ 2+	[E2] [E2]		0.00325	B(E2)(W.u.)>0.16 B(E2)(W.u.)>0.002

[†] From β^- decay, with Mult. and mixing ratios deduced from $\gamma\gamma(\theta)$ and RUL, unless otherwise noted.

^{\ddagger} Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

Adopted Levels, Gammas

Level Scheme

 $_{21}^{50}{
m Sc}_{29}$