Adopted Levels

	Hist	tory	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Jun Chen and Balraj Singh	NDS 157, 1 (2019)	15-Apr-2019

 $S(n)=20390 SY; S(p)=1530 SY; Q(\alpha)=-7460 SY$ 2017Wa10

Estimated $\Delta S(n)=780$, $\Delta S(p)=\Delta Q(\alpha)=710$ (2017Wa10).

Q(εp)=13340 500, S(2n)=37060 710, S(2p)=700 640 (syst,2017Wa10). Q(ε2p)=10598 500 (syst, deduced by evaluator from mass excesses in 2017Wa10).

1994B110: first identification of ⁵⁰Ni isotope. Fragmentation reaction used to produce ⁵⁰Ni isotope at GSI facility. Primary beam: ⁵⁸Ni at 650 MeV/nucleon; target:⁹Be. Fragment separator: FRS at GSI.

2003Ma34: fragmentation reaction used to produce ⁵⁰Ni isotope at GSI facility. Primary beam: ⁵⁸Ni at 650 MeV/nucleon; target=⁹Be. Fragment separator: FRS at GSI. Fragments implanted in a telescope of eight Si detectors and identified by charge and charge/mass ratio, including time-of-flight method. Measured β p spectra following fragment implantation, half-life and delayed proton branch. This work is from the same laboratory as 1994B110.

2007Do17: fragmentation reaction used to produce ⁵⁰Ni isotope at SISSE/LISE3 facility in GANIL. Primary beam: ⁵⁸Ni²⁶⁺ at 74.5 MeV/nucleon; target=natural Ni. Fragment separator= α -LISE3. Identification by energy loss, residual energy and time-of-flight measurements using two micro-channel plate (MCP) detectors and Si detectors. Double-sided silicon-strip detectors (DSSSD) and a thick Si(Li) detector were used to detect implanted events, charged particles and β particles. γ rays were detected by Ge detectors. Coincidences measured between charged particles, β rays and γ rays.

Theory references: consult the NSR database (www.nndc.bnl.gov/nsr/) for 30 primary references dealing with various aspects of nuclear structure.

Additional information 1.

⁵⁰Ni Levels

E(level)	\mathbf{J}^{π}	T _{1/2}	Comments
0	$\overline{0^+}$	18.5 ms 12	$\%\varepsilon + \%\beta^{+} = 100; \ \%\varepsilon p = 73 \ 6 \ (2007 \text{Do} 17); \ \%\varepsilon 2p = 14 \ 5$
			$T_{1/2}$: from 2007Do17, measured by time correlation of implantation events due to ⁵⁰ Ni and
			subsequent emission of protons. Other: 12 ms $+3-2$ (2003Ma34). Weighted average of two values
			of half-lives is 17.3 ms 25 with a χ^2 =5.5, whereas unweighted average is 15.3 ms 32.

 $\% \varepsilon p = 86.7 \ 39$ is total delayed proton branch in 2007Do17 from time spectrum of events with energy >900 keV in the charged-particle spectrum, out of which 14% 5 seems associated with $\varepsilon 2p$ branch, from the observed intensity of 1972 proton group in 2007Do17. Possible small contribution from delayed- α is ignored. Other $\% \varepsilon p = 70 \ 20 \ (2003Ma34)$.

Production σ =0.061 nb +33-30 (1994B110).

1