50 Fe ε decay (152.0 ms) 2015Mo01

	Hist	ory	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Jun Chen and Balraj Singh	NDS 157, 1 (2019)	15-Apr-2019

Parent: ⁵⁰Fe: E=0.0; $J^{\pi}=0^+$; $T_{1/2}=152.0 \text{ ms } 6$; $Q(\varepsilon)=8151 8$; $\%\varepsilon+\%\beta^+$ decay=100.0 ⁵⁰Fe- $T_{1/2}$: From ⁵⁰Fe Adopted Levels. Measured value is 152.1 ms 6 by 2015Mo01.

2015Mo01: ⁵⁰Fe ions were produced from fragmentation of 680 MeV/nucleon ⁵⁸Ni beam with 400 mg/cm² ⁹Be target using SIS-18 synchrotron at GSI facility. Reaction fragments were separated in-flight using the fragment separator FRS. The identification of nuclei was achieved by the measurement of magnetic rigidity and velocity of fragments by time-of-flight method. Separated ions were implanted in one of the six double-sided silicon strip detectors (DSSSDs). The β -decay signals were detected in the same DSSSD. Surrounding the implantation setup was the RISING array of 15 Euroball cluster Ge detectors for γ detection. Measured E γ , I γ , $\gamma\gamma$ -coin, $\beta\gamma$ -coin, and β -decay half-life. Deduced levels, J, π , β feedings, log *ft* values, Gamow-Teller strengths. Additional information 1.

1997Ko46: ⁵⁰Fe produced in ⁴⁰Ca(¹²C,2n) reaction at the Chalk River TASCC Facility. Measured $E\gamma$, γ (t) using HPGe, scintillation detector, gas counter, and He-jet. Energy of only the 651 γ reported in this work.

⁵⁰Mn Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}		Comments
0.0	0^{+}	283.19 ms 10	$T_{1/2}$: from Adopted Levels.	
651.00 <i>6</i>	1^{+}		-/- *	
800.01 9	2^{+}			
2403.84 10	1^{+}			
2684.19 10	1^{+}			
3380.12 10	1^{+}			
3643.5 <i>3</i>	1^{+}			
4012.9 12	1^{+}			
4315.9 14	1^{+}			

[†] From least-squares fit to $E\gamma$ data.

[‡] From the Adopted Levels.

ε, β^+ radiations

E(decay)	E(level)	$I\beta^+$ #	Ιε [#]	$\log ft^{\ddagger}$	$\mathrm{I}(\varepsilon + \beta^+)^{\dagger \#}$	Comments
(3835 8)	4315.9	0.08 3	0.001 1	4.6 2	0.08 3	av Eβ=1259.9 39; εK=0.01340 12; εL=0.001407 13; εM+=0.0002451 2
(4138-8)	4012.0	0.04.2	0.0004.2	512	0.04.2	B(GT+)=0.099 38 (2015Mo01). Other: 0.119 3 from (³ He,t) (2005Fu16), adjusted for new $T_{1/2}$.
(4150 0)	4012.9	0.04 2	0.0004 2	5.1 2	0.04 2	ϵM +=0.0001809 <i>I</i> B(GT+)=0.034 <i>16</i> (2015Mo01). Other: 0.076 <i>2</i> from (³ He,t)
(4508 8)	3643.5	0.15 3	0.0012 2	4.8 1	0.15 3	(2005Fu16), adjusted for new $T_{1/2}$. av E β =1580.8 39; ε K=0.00709 5; ε L=0.000744 5; ε M+=0.0001297 9
(4771 0)	2280.12	0.84.7	0.0055.5	4 1 4 4	0.05.7	B(GT+)=0.069 <i>15</i> (2015Mo01). Other: 0.163 <i>5</i> from (³ He,t) (2005Fu16) adjusted for new $T_{1/2}$.
(4771-8)	3380.12	0.84 /	0.0055 5	4.14 4	0.85 /	av $E\beta = 1/07.4 \ 39$; $\varepsilon K = 0.00572 \ 4$; $\varepsilon L = 0.000600 \ 4$; $\varepsilon M + = 0.0001045 \ 7$ $P(CT +) = 0.280 \ 21 \ (2015Mo01)$ Other 0.400 12 from (311a t)
(5467 8)	2684.19	0.70 6	0.0027 2	4.56 4	0.70 6	(2005Fu16) adjusted for new $T_{1/2}$. av E β =2044.0 <i>39</i> ; ε K=0.003451 <i>19</i> ; ε L=0.0003620 <i>2</i> ;

Continued on next page (footnotes at end of table)

⁵⁰ = 0 = 2017 W 10

⁵⁰Fe-Q(ε): From 2017Wa10.

50 Fe ε decay (152.0 ms) 2015Mo01 (continued)

ϵ, β^+ radiations (continued)

E(decay)	E(level)	Ιβ ⁺ #	Ie#	Log ft [‡]	$I(\varepsilon + \beta^+)^{\dagger \#}$	Comments
(5747 8)	2403.84	1.47 10	0.0048 3	4.36 3	1.47 10	εM +=6.31×10 ⁻⁵ 4 B(GT+)=0.106 11 (2015Mo01). Other: 0.123 4 from (³ He,t) (2005Fu16) adjusted for new T _{1/2} . av E β =2180.2 39; εK =0.002880 15; εL =0.0003020 1;
						ε M+=5.26×10 ⁻⁵ 3 B(GT+)=0.167 15 (2015Mo01). Other: 0.171 5 from (³ He,t) (2005Fu16) adjusted for new T _{1/2} .
(7500 8)	651.00	22.5 14	0.0286 18	3.81 3	22.5 14	av $E\beta$ =3037.7 40; ε K=0.001132 5; ε L=0.0001186 5; ε M+=2.068×10 ⁻⁵ 8 B(GT+)=0.589 45 (2015Mo01). Other: 0.568 16 from (³ He.t) (2005Eu16) adjusted for new T12.
(8151 8)	0.0	74.1 <i>14</i>	0.0710 <i>15</i>	3.49 1	74.2 14	av E β =3358.1 40; ε K=0.000853 3; ε L=8.94×10 ⁻⁵ 3; ε M+=1.557×10 ⁻⁵ 6 I(ε + β ⁺): 100-(β feeding to all the excited states).

[†] From 2015Mo01, based on in-out intensity balance. For the ground state, $\varepsilon + \beta^+$ feeding is from 100–(summed $\varepsilon + \beta^+$ feeding to excited states).

 \ddagger Deduced by evaluator using the LOGFT code. Values in 2015Mo01 are slightly different.

[#] Absolute intensity per 100 decays.

$\gamma(^{50}Mn)$

I γ normalization: From determination of number of 651-keV γ rays emitted per ⁵⁰Fe decay, using the formula I γ (651)=N⁰(651 γ)/[N⁰_{β} ε (651 γ)], where N⁰(651 γ) is the total number of γ events in the implant- β - γ correlation fit, N⁰_{β} is the

total number of β events in the implant- β correlation fit, and ε is the detector efficiency for 651 γ . The ε p decay mode of ⁶⁰Fe is expected to be negligible.

Eγ	I_{γ}^{\ddagger}	E_i (level)	\mathbf{J}_i^{π}	E _f J	$\frac{\pi}{f}$ Mult. [†]	Comments
149.0 <i>1</i>	1.53 14	800.01	2+	651.00 1	+ (M1)	
650.99 6	100.0 35	651.00	1^{+}	0.0 0) ⁺ M1	E_{γ} : from 1997Ko46. Other: 651.0 <i>l</i> (2015Mo01).
799.6 2	0.98 12	800.01	2^{+}	0.0 0)+ E2	·
1603.7 2	0.89 11	2403.84	1^{+}	800.01 2	+	
1883.8 2	0.28 8	2684.19	1^{+}	800.01 2	+	
2403.8 1	5.54 26	2403.84	1^{+}	0.0 0)+	
2684.2 1	2.79 19	2684.19	1^{+}	0.0 0)+	
3380.0 1	3.75 22	3380.12	1^{+}	0.0 0)+	
3643.4 <i>3</i>	0.66 12	3643.5	1^{+}	0.0 0)+	
4012.7 12	0.19 9	4012.9	1^{+}	0.0 0)+	
4315.7 14	0.36 14	4315.9	1^{+}	0.0 0)+	

[†] From Adopted Gammas.

^{\ddagger} For absolute intensity per 100 decays, multiply by 0.225 *14*.

⁵⁰Fe ε decay (152.0 ms) 2015Mo01

Decay Scheme

 $^{50}_{25}Mn_{25}$