⁵⁰Co ε decay (38.8 ms) 2007Do17,1996Fa09

History					
Туре	Author	Citation	Literature Cutoff Date		
Full Evaluation	Jun Chen and Balraj Singh	NDS 157, 1 (2019)	15-Apr-2019		

Parent: ⁵⁰Co: E=0; J^{π}=(6⁺); T_{1/2}=38.8 ms 2; Q(ε)=16895 73; % ε +% β ⁺ decay=100.0

⁵⁰Co-Q(ε): Deduced using mass excess=-17585 41 for ⁵⁰Co from IMME analysis (2007Do17). Other: 16850 400 (syst, 2017Wa10).

 50 Co-T_{1/2}: Measured by 2007Do17.

 ${}^{50}\text{Co-}\%\varepsilon + \%\beta^+$ decay: $\%\varepsilon p=70.5$ 7 (2007Do17).

2007Do17: fragmentation reaction used to produce ⁵⁰Ni isotope at SISSE/LISE3 facility in GANIL. Primary beam: ⁵⁸Ni²⁶⁺ at 74.5 MeV/nucleon; target=natural Ni. Fragment separator= α -LISE3. Identification by energy loss, residual energy and time-of-flight measurements using two micro-channel plate (MCP) detectors and Si detectors. Double-sided silicon-strip detectors (DSSSD) and a thick Si(Li) detector were used to detect implanted events, charged particles and β particles. γ rays were detected by Ge detectors. Coincidences measured between charged particles, β rays and γ rays.

1996Fa09: experiment at FRS in GSI. Fragmentation reaction with ⁵⁸Ni primary beam of 650 MeV/nucleon and beryllium target. Identification by TOF, position information, magnetic field values and energy loss. Implantation into a Si telescope of 7 detectors.

Coincidences between fragments and protons.

Data are from 2007Do17, unless otherwise stated.

⁵⁰Fe Levels

E(level)	$J^{\pi \dagger}$	Comments
0.0	0^{+}	
764.8 <i>3</i>	2^{+}	
1851.4 8	(4^{+})	
3159.2 9	(6^{+})	
4145+x		E(level): $S(p)({}^{50}Fe)+x$, where x<12750 75 from $Q(\varepsilon)({}^{50}Co)-S(p)({}^{50}Fe)$, $S(p)({}^{50}Fe)=4145$ 9 (2017Wa10).
8458 15	(6^{+})	%p=100
		E(level): from E(p)(c.m.)=2772 12, S(p)(50 Fe)=4145 9 (2017Wa10) and E(49 Mn, 11/2 ⁻)=1541.31 25 (from
		Adopted Levels for ⁴⁹ Mn in ENSDF database). E(p)(c.m.)=2772 12 is the weighted average of E(p)=2790
		<i>41</i> (1996Fa09), E(p)=2770 <i>12</i> (2007Do17).
		$r_{(1)}$ $r_{(1)}$ $r_{(1)}$ $r_{(2)}$ $r_{($

E(level): identified as IAS of (6⁺) g.s. of ⁵⁰Co based on strong ε decay to this level with log *ft*=3.32.

 † From the Adopted Levels.

ε, β^+ radiations

E(decay)	E(level)	Iβ ⁺ ‡	$\mathrm{I}\varepsilon^{\ddagger}$	$\log ft^{\dagger}$	$\mathrm{I}(\varepsilon + \beta^+)^{\ddagger}$	Comments
(8.44×10 ³ 8)	8458	42.1 24	0.0358 23	3.32 3	42.1 24	av E β =3686 32; ε K=0.000757 19; ε L=8.02×10 ⁻⁵ 20; ε M+=1.40×10 ⁻⁵ 4 I(ε + β ⁺): from delayed proton intensity (2007Do17).
$(6 \times 10^{3#} 6)$	4145+x				28.4 25	I($\varepsilon + \beta^+$): intensity associated with ε p decay, deduced from total $\% \varepsilon$ p=70.5 7 and $\% \varepsilon$ p=42.1 24 to 8463 level (2007Do17).
(1.374×10 ⁴ 7)	3159.2	15 3	0.0030 6	4.78 9	15 3	av E β =6127 37; ε K=0.000178 3; ε L=1.88×10 ⁻⁵ 4; ε M+=3.28×10 ⁻⁶ 6 I(ε + β ⁺): treated by the evaluators as an upper limit since there could be some possible γ feeding from higher levels.

[†] Deduced assuming $\Delta Q(\varepsilon)$ =180 keV.

[‡] Absolute intensity per 100 decays.

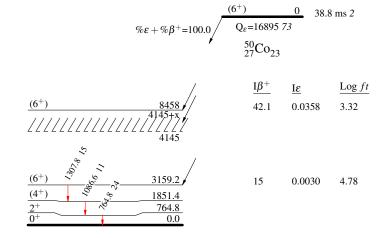
[#] Estimated for a range of levels.

⁵⁰Co ε decay (38.8 ms) 2007Do17,1996Fa09 (continued)

 $\gamma(^{50}\text{Fe})$

Eγ	I_{γ}^{\dagger}	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}
764.8 <i>3</i>	24 4	764.8	2+	0.0	0^{+}
1086.6 7	11 5	1851.4	(4^{+})	764.8	2+
1307.8 5	15 <i>3</i>	3159.2	(6^{+})	1851.4	(4^{+})

 † Absolute intensity per 100 decays.


⁵⁰Co ε decay (38.8 ms) 2007Do17,1996Fa09

Decay Scheme

Intensities: $I_{(\gamma+ce)}$ per 100 parent decays

 $I_{\gamma} < 2\% \times I_{\gamma}^{max}$
 $I_{\gamma} < 10\% \times I_{\gamma}^{max}$
 $I_{\gamma} > 10\% \times I_{\gamma}^{max}$

 $^{50}_{26}{
m Fe}_{24}$