Adopted Levels, Gammas

	Hist	ory	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Jun Chen and Balraj Singh	NDS 157, 1 (2019)	15-Apr-2019

 $Q(\beta^{-}) = -16895 \ 73; \ S(n) = 17797 \ 26; \ S(p) = 4145 \ 9; \ Q(\alpha) = -7430 \ 14 \ 2017 Wal0$

 $Q(\beta^-)$ deduced using mass excess=-17585 41 for ⁵⁰Co from IMME analysis (2007Do17). Other: $Q(\beta^-)$ =-16850 400 (syst, 2017Wa10).

Q(εp)=3568 9, S(2n)=32620 400 (syst), S(2p)=6232 11 (2017Wa10).

Mass measurement: 2018Zh29 (mass excess=-34477 6, also 2017Zh12).

Other measurements:

1977Tr05: identification of ⁵⁰Fe: ⁵⁴Fe(α ,⁸He),E=110 MeV; measured particle spectra; deduced mass excess of ⁵⁰Fe.

1994B110, 2002Pf03: production and identification of ⁵⁰Fe isotope ⁹Be(⁵⁸Ni,X) at 650 MeV/nucleon, GSI facility.

1997Ko46: ⁵⁰Fe decay properties investigated. ⁵⁰Fe activity produced by beam: 51 MeV ¹²C, target: natural Ca 1.6 mg/cm² at Chalk River TASCC facility. Beta rays detected by plastic counters, gamma rays by HPGe 40%, beta-gamma coincidences observed. First measurement of isotopic half-life.

2015Mo01: ⁵⁰Fe ions were produced from fragmentation of 680 MeV/nucleon ⁵⁸Ni beam with 400 mg/cm² ⁹Be target using SIS-18 synchrotron at GSI facility. Reaction fragments were separated in-flight using the fragment separator FRS. The identification of nuclei was achieved by measurement of magnetic rigidity and velocity of fragments from time-of-flight method. Separated ions were implanted in one of six double-sided silicon strip detectors (DSSSDs). The β -decay signals were detected in the same DSSSD. Surrounding the implantation setup was the RISING array of 15 Euroball cluster detectors for γ detection. Measured half-life of ⁵⁰Fe decay.

2017Ku12: ⁵⁰Fe isotope produced in the fragmentation of 79 MeV/nucleon ⁶⁴Zn²⁹⁺ beam with Ni target of 236 mg/cm² thickness. Fragments were selected with the LISE3 separator at GANIL and identified by time-of-flight and energy loss using silicon ΔE detector and implanted into a double-sided silicon strip detector (DSSSD). The implanted ions and charged-particle decays were detected by the DSSSD, which was surrounded by four HPGe clover detectors (three EXOGAM clovers and a smaller Euroball clover) for γ -ray detection. Half-life of ⁵⁰Fe decay was measured by (⁵⁰Fe implants) β time-correlated decay events. Total number of ⁵⁰Fe implanted ions=1.35×10⁴.

Additional information 1.

Theory references: consult the NSR database (www.nndc.bnl.gov/nsr/) for 33 primary references dealing with various aspects of nuclear structure.

⁵⁰Fe Levels

Cross Reference (XREF) Flags

				A ⁵⁰ Co ε decay (38.8 ms) D ⁵⁴ Fe(α , ⁸ He) B ⁵¹ Ni εp decay (23.8 ms) E Pb(⁵⁰ Fe, ⁵⁰ Fe' γ) C ²⁸ Si(²⁸ Si, α 2n γ)		
E(level) [†]	J ^π ‡	T _{1/2}	XREF	Comments		
0.0#	0+	152.0 ms 6	ABCDE	%ε+%β ⁺ =100; %εp≈0 T _z =-1. T _{1/2} : weighted average of 152.1 ms 6 (measured by 2015Mo01 at RCNP-Osaka from ⁵⁰ Fe implants and β correlated events); and 150.1 ms 29 (measured by 2015Mo01 from γ-decay curves). Other values: 145 ms 13 (measured by 2017Ku12 at GANIL from (⁵⁰ Fe implants)β correlated decays); and 155 ms 11 (measured by 1997Ko46 at Chalk River from decay curve for 651γ). Values from 2017Ku12 and 1997Ko46 are in agreement with values from 2015Mo01 but much less precise, and do not affect the weighted averaged value. Additional information 2. %εp,%εα: Q(εp)=3568 keV 9 for ⁵⁰ Fe suggests that this nuclide may be a possible delayed proton emitter, but such branches would be weak compared with the superallowed β transition. Low value of Q(εα)=180 keV 60 would also not allow		

Adopted Levels, Gammas (continued)

⁵⁰Fe Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	XREF	Comments
				competition with the superallowed β transition.
764.9 [#] 3	2^{+}	7.7 ps 17	ABCDE	XREF: D(810).
				J^{π} : angular distribution pattern in Pb(⁵⁰ Fe, ⁵⁰ Fe') is consistent with $\Delta J=2$, quadrupole excitation.
				T _{1/2} : from B(E2) \uparrow =0.140 30 in Pb(⁵⁰ Fe, ⁵⁰ Fe' γ). Note that in the 2010 update (2011El01, the value of 1.5 ps 3 was erroneous, as it was missing a multiplicative factor of (2J+1), where J=2.
1851.5 [#] 5	(4^{+})		ABC	
3159.3 [#] 7	(6^{+})		AC	
3397.2 9	(4^{+})		В	E(level): probable mirror state of 3324.6, 4^+ in 50 Cr.
4786.4 [#] 12	(8^+)		С	
6367.4 [#] 16	(10^{+})		С	
6994.4 <i>19</i>	(11^{+})		С	
8458 15	(6 ⁺)		A	%p=100 Additional information 3. J ^{π} : isobaric multiplet systematics.

[†] From E γ data, assuming $\Delta E(\gamma)=1$ keV when not stated. [‡] From analogy to the mirror nucleus ⁵⁰Cr for the yrast states up to spin 11⁺ (2001Le31), unless otherwise stated. [#] Band(A): Yrast sequence Structure similar to that in the mirror nuclide ⁵⁰Cr.

E _i (level)	\mathbf{J}_i^{π}	Eγ	I_{γ}	$E_f J_f^{\pi}$	Mult.	Comments
764.9	2+	764.9 3	100	0.0 0+	[E2]	B(E2)(W.u.)=26 6 E_{γ} : weighted average of 764.8 3 from ⁵⁰ Co ε decay (38.8 ms) and 765.3 6 from ⁵¹ Ni ε p decay (23.8 ms). Other: 767 7 from (⁵⁰ Fe, ⁵⁰ Fe' γ).
1851.5	(4^{+})	1086.6 <i>3</i>	100	764.9 2+		E_{v} : from ⁵¹ Ni ε p decay. Other: 1086.6 7 from ⁵⁰ Co ε decay.
3159.3	(6^{+})	1307.8 5	100	1851.5 (4+)		E_{γ} : from ⁵⁰ Co ε decay.
3397.2	(4^{+})	1545.7 7	100	1851.5 (4+)		E_{γ} : from ⁵¹ Ni ε p decay.
4786.4	(8 ⁺)	1627		3159.3 (6+)		, – .
6367.4	(10^{+})	1581		4786.4 (8+)		
6994.4	(11+)	627		6367.4 (10 ⁺)		

[†] From (²⁸Si, α 2n γ) only.

$\gamma(^{50}\text{Fe})$

Adopted Levels, Gammas

Level Scheme

Intensities: Relative photon branching from each level

 $^{50}_{26}{
m Fe}_{24}$

Adopted Levels, Gammas

