	Hist	ory	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Jun Chen and Balraj Singh	NDS 157, 1 (2019)	15-Apr-2019

Parent: ⁵¹Ni: E=0; $J^{\pi} = (7/2^{-})$; $T_{1/2}=23.8 \text{ ms } 2$; $Q(\varepsilon p)=15260 \ 90$; % $\varepsilon p \ decay=87.2 \ 8$

⁵¹Ni-J^{π}: From systematics.

⁵¹Ni-Q(εp): Deduced from IMME analysis of mass excess=-11927 65 for ⁵¹Ni (2007Do17). Other: 15290 500 (syst, 2017Wa10).

⁵¹Ni-T_{1/2}: Measured by 2007Do17, adopted in Adopted Levels of ⁵¹Ni.

⁵¹Ni-% ε p decay: % ε p=87.2 8 (2007Do17).

2007Do17: Fragmentation reaction used to produce ⁵¹Ni isotope at SISSE/LISE3 facility in GANIL. Primary beam: ⁵⁸Ni²⁶⁺ at 74.5 MeV/nucleon; target=natural Ni. Fragment separator= α -LISE3. Fragment identification by energy loss, residual energy and time-of-flight measurements using two micro-channel plate (MCP) detectors and Si detectors. Double-sided silicon-strip detectors (DSSSD) and a thick Si(Li) detector were used to detect implanted events, charged particles and β particles. The γ rays were detected by four Ge detectors. Coincidences measured between charged particles and γ rays T_{1/2} measured by time correlation of implantation events due to ⁵¹Ni and subsequent emission of protons and γ rays. Total proton branching ratio is from time spectrum

implantation events due to γ Ni and subsequent emission of protons and γ rays. Total proton branching ratio is from time spectrum of events with energy >900 keV in the charged-particle spectrum. Possible small contributions from delayed- α and delayed-2p decays are ignored.

⁵⁰Fe Levels

E(level)	J^{π}	Comments
0.0	0^{+}	
765.3 6	2+	
1851.9 7	(4^{+})	
3397.6 10	(4^{+})	E(level): probable mirror state of 3324.6 , 4^+ in 50 Cr.

 $\gamma(^{50}\text{Fe})$

Eγ	Ι _γ Ϋ	E_i (level)	\mathbf{J}_i^{π}	E_f	J_f^{π}
765.3 6	73 4	765.3	2+	0.0	0^{+}
1086.6 <i>3</i>	29 <i>3</i>	1851.9	(4^{+})	765.3	2+
1545.7 7	4.2 12	3397.6	(4^{+})	1851.9	(4^{+})
^x 1743.4 <i>10</i>	4.4 15				

[†] Absolute intensity per 100 decays.

 $x \gamma$ ray not placed in level scheme.

Delayed Protons (⁵⁰Fe)

E(p) [†]	E(⁵⁰ Fe)	I(p) [‡]
1084 41		1.3 8
1356 23		1.5 5
1859 20		3.0 9
2234 18		1.8 5
2515 28		4.8 22
2915 17		4.0 9
3121 <i>31</i>		2.1 10
3421 23		0.5 4
3709 29		1.5 5
3929 24		1.1 6
4415 27		0.5 3
5664 30		0.9 4

⁵¹Ni *ɛ*p decay (23.8 ms) 2007Do17 (continued)

Delayed Protons (continued)

E(p) [†]	E(⁵⁰ Fe)	I(p) [‡]	E(⁵¹ Co)	Comments
4662 16	1851.9	8.7 8	6601	E(⁵¹ Co): IAS in ⁵¹ Co with $J^{\pi}=7/2^{-}$. Value of 6001 in figure 47 of 2007Do17 seems a misprint.

 † The proton energies are in the center-of-mass system. ‡ Absolute intensity per 100 decays.

⁵¹Ni εp decay (23.8 ms) 2007Do17

Decay Scheme

 γ Intensities: $I_{(\gamma+ce)}$ per 100 parent decays I(p) Intensities: I(p) per 100 parent decays

 ${}^{50}_{26}{
m Fe}_{24}$