⁵⁰V β⁻ decay (2.65×10¹⁷ y):? 2019La09,2011Do08,1989Si07

	History					
Туре	Author	Citation	Literature Cutoff Date			
Full Evaluation	Jun Chen and Balraj Singh	NDS 157, 1 (2019)	15-Apr-2019			

Parent: ⁵⁰V: E=0.0; $J^{\pi}=6^+$; $T_{1/2}=2.65\times10^{17}$ y +16-18; $Q(\beta^-)=1038.06$ 30; $\%\beta^-$ decay=0.7 7

⁵⁰V-J^{π},T_{1/2}: From ⁵⁰V Adopted Levels.

 ${}^{50}\text{V-Q}(\beta^{-})$: From 2017Wa10.

 ${}^{50}\text{V-}\%\beta^-$ decay: From ${}^{50}\text{V}$ Adopted Levels.

2019La09: ⁵⁰V sample was produced from vanadium flakes by multifold electron beam melting (EBM) at the Gran Sasso Underground Laboratory (LNGS). γ rays were detected with ultra-low background high purity germanium (ULB-HPGe) detectors. Measured activities. Deduced parent partial half-life. Only the 1554 γ in ⁵⁰Ti was observed with no evidence for 783 γ in ⁵⁰Cr.

2011Do08: natural 255.82 g ⁵⁰V sample measured for 97.8 d (total detector mass measuring time product=185.8 kg.d). Ultralow background Ge-detector (ULB detector) at the underground laboratory for dosimetry and spectrometry of the PTB in Germany. Detector calibrated with solutions of know activity provided by PTB. Results corrected for contaminations from ²³⁸U and ²³²Th, mass of water (determined at PTB) and oxygen (determined at German Federal Institute for Materials Research) in sample resulting from exposure to air subtracted when calculating activity concentration. Measured partial half-life of ⁵⁰V ε decay. Only the 1554 γ in ⁵⁰Ti was observed with no evidence for 783 γ in ⁵⁰Cr.

1989Si07: measured 1554 γ and deduced T_{1/2}(ε); three large Ge detectors in a salt mine; 337.5 g of natural V, 1109 h and a background run of 4206 h; corrections were made for Th and U contaminants. Authors claimed to have observed 783 γ in ⁵⁰Cr from the first 2⁺ state of ⁵⁰Cr.

1985Si02 (same group as 1989Si07): measured 1554 γ and deduced T_{1/2}(ε); intrinsic Ge; 100.6 g of natural V, 193.3 h and background run of 100 d; correction for U contaminants.

1984A110: measured 1554 γ and deduced T_{1/2}(ε); Ge(HP); 4250 g of natural V, 135.5 d. No 783 γ from β^- decay was observed.

⁵⁰Cr Levels

E(level)	\mathbf{J}^{π}	Comments
0.0?	0^{+}	
783 32	2^{+}	$F(\text{level}) I^{\pi}$. From the Adopted Levels. Energy is rounded value

β^{-} radiations

E(decay)	E(level)	$I\beta^{-\dagger}$	Log ft	Comments
(254.8 [‡] 3)	783.3?	0.7 7	>25.6	av $E\beta$ =75.53 10 $I\beta^-$: from % ε >98.6 (2019La09). Others: 3.5 25 from % ε >92.9 (2011Do08), 17% 11 (1989Si07). Log <i>ft</i> : for allowed decay

[†] Absolute intensity per 100 decays.

[‡] Existence of this branch is questionable.

$\gamma(^{50}Cr)$

Eγ	E _i (level)	\mathbf{J}_i^{π}	$E_f J_f^{\pi}$	Comments
783.3†	783.3?	2+	0.0? 0+	E_{γ} : Rounded value from the Adopted Gammas. Observation of this γ was claimed only by 1989Si07 in a complex γ-ray spectrum shown in their Fig. 2. This γ was not seen by 2019La09, 2011Do08 or 1984Al10.

[†] Placement of transition in the level scheme is uncertain.

50 V β^- decay (2.65×10¹⁷ y):? 2019La09,2011Do08,1989Si07

Decay Scheme

Legend

