⁴⁰Ca(¹⁶O,α2pγ),(¹²C,2pγ) 1974Ku11,1973De09,1994Pa34

History								
Туре	Author	Citation	Literature Cutoff Date					
Full Evaluation	Jun Chen and Balraj Singh	NDS 157, 1 (2019)	15-Apr-2019					

Also includes ${}^{12}C({}^{40}Ca,2p\gamma)$.

1974Ku11: ⁴⁰Ca(¹⁶O, α 2p γ),E=37-65 MeV ¹⁶O beam was produced from the Munich MP tandem Van de Graaff. Target was a 200 μ g/cm² ⁴⁰Ca layer sandwiched between Au foils. γ rays were detected with Ge(Li) detectors. Measured E γ , I γ , $\gamma\gamma$ -coin, $\gamma(\theta)$, $\gamma(\text{lin pol})$. Deduced levels, J, π , band structure, γ -ray multipolarities. Comparisons with shell-model calculations. Measurements with ²⁴Mg(³²S,2p $\alpha\gamma$) and ⁴⁰Ca(¹⁴N,3pn γ) are also mentioned with no details given, but results similar to those for ⁴⁰Ca(¹⁶O,2p $\alpha\gamma$).

1973De09: ⁴⁰Ca(¹²C,2p γ),E=28 MeV beam from the EN tandem accelerator of the Max-Planck-Institut fur Kernphysik in Heidelberg. Measured γ spectra and γ (t). Deduced lifetimes by Recoil distance method (RDM).

M.M. Giles et al., Phys. Rev. C, accepted April 9, 2019, (pre-publication copy received from authors April 10, 2019): ${}^{40}Ca({}^{12}C,2p\gamma),E=30.5 \text{ MeV } {}^{12}C$ beam was produced from the FN Tandem facility of the University of Cologne. Target was 0.5 mg/cm² ${}^{40}Ca$ foil on ${}^{197}Au$ backings. The γ rays were detected by 11 Ge detectors. Measured E γ , I γ , $\gamma\gamma$ -coin, level lifetimes by recoil-distance Doppler-shifts using Cologne plunger device. Deduced levels, J, π , B(E2) for the first 2⁺ and 4⁺ states. Comparison with shell-model calculations.

1994Pa34: ¹²C(⁴⁰Ca,2p γ) E=140 MeV ⁴⁰Ca beam was from the 20-MV tandem accelerator at Daresbury Laboratory. γ rays were detected with four Compton-suppressed Ge detectors. Measured γ spectra (=±60°,±120°), $\gamma(\theta$ =75°,135°,195°,255°), internal rotations. Deduced g factors by transition field method.

1974Br04: ⁴⁰Ca(¹⁶O, α 2p γ) E=47 MeV beam from the Stony Brook tandem Van de Graaff accelerator. Measured level lifetimes by recoil-distance Doppler-shift method (RDDS)with target plunger at θ =0°.

1976KiZR: ⁴⁰Ca(¹²C,2p γ) E=38 MeV. Measured $\gamma(\theta)$, DCO, and ratios of cascade γ rays.

⁵⁰Cr Levels

The g factors are from 1994Pa34 with the following assumptions in the analysis: 1. $T_{1/2}$ values from 1973De09 and 1974Ku11. 2. Feeding from the continuum states completed before the recoil enters the Gd foil; supported by data for ⁴⁹Cr, ³⁹K, and ⁴¹Ca, but side-feeding times not known for ⁵⁰Cr. 3. Chalk River parametrization for field calibration applied with its strength multiplied by 1.3 2.

E(level) [†]	Jπ‡	T _{1/2} @	Comments
0.0 <mark>&</mark>	0^{+}		
783.2 ^{&} 5	2^{+}	9.0 ps 4	g=+0.64 11
			$T_{1/2}$: weighted average of 9.2 ps 4 (M.M. Giles et al., Phys. Rev. C, accepted April 9, 2019), 8.7 ps 15 (1974Br04), and 8.4 ps 8 (1973De09). Method: recoil-distance Doppler shift (RDDS).
1881.1 ^{&} 7	4+	2.22 ps 28	g=+0.43 9
			T _{1/2} : others: 3.4 ps 5 (M.M. Giles et al., Phys. Rev. C, accepted April 9, 2019, RDDS); <2.8 ps (1974Br04, RDDS).
3163.7 <mark>&</mark> 9	6+	1.25 ps 28	g=+0.30 9
			T _{1/2} : other: <1.6 ps (1974Br04). g-factor adjusted for T _{1/2} =0.69 ps <i>14</i> (1998Br34) from original g=+0.54 <i>16</i> (1994Pa34) which used T _{1/2} =1.25 ps <i>28</i> (1973De09).
3324.2 9	4+ #	<0.7 ps	
3792.1 9		9.0 ps 14	J^{π} : 4 ⁻ assignment in 2019-Giles paper seems to have been taken from 1998Br34 that was based on systematics and model considerations, but evaluators assign 5 ⁺ in the Adopted Levels based on arguments from experimental evidence in different reactions.
3825.4 10		3.5 ps +35-14	$T_{1/2}$: other: <1.4 ps (1974Br04).
4366 1	5 ^{-#}		E(level): level proposed by M.M. Giles et al., Phys. Rev. C, accepted April 9, 2019.
4744.9 ^{&} 10	8+		g=+0.54 9

Continued on next page (footnotes at end of table)

40 Ca(16 O, α 2p γ),(12 C,2p γ) 1974Ku11,1973De09,1994Pa34 (continued)

⁵⁰Cr Levels (continued)

E(level) [†]	J π ‡
6340.6 ^{&} 12	10 ⁺
6950.5 13	11 ⁺
7612.3 14	12 ⁺

[†] From least-squares fit to $E\gamma$ data.

[‡] From 1974Ku11, based on deduced γ -ray multipolarities, unless otherwise noted.

[#] Assignment proposed by M.M. Giles et al., Phys. Rev. C, accepted April 9, 2019.

[@] From 1973De09 by RDM, unless otherwise noted.

& Band(A): g.s. band.

E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_i (level)	\mathbf{J}_i^{π}	$E_f J_f^{\pi}$	Mult. [@]	Comments
467.9 [‡] 5	1.9 [‡] 3	3792.1		3324.2 4+		
574 [#]		4366	5-	3792.1		
609.9 5	47 5	6950.5	11^{+}	6340.6 10	+ M1	$A_2 = -0.31 3$, $A_4 = +0.01 4$, pol = -0.28 7 (1974Ku11).
661.7 [‡] 5	$0.3^{\ddagger} 2$	3825.4		3163.7 6+		
661.8 5	41 4	7612.3	12^{+}	6950.5 11	+ M1	$A_2 = -0.29 4$, $A_4 = +0.05 5$, pol = $-0.12 10 (1974 Ku 11)$.
783.2 5	100	783.2	2+	0.0 0+	E2	E_{γ} : weighted average of 783.4 5 (1973De09) and 782.9 5 (1974Ku11).
						$A_2 = +0.22 3$, $A_4 = -0.03 3$, pol=+0.35 5 (1974Ku11).
1042 [#]		4366	5-	3324.2 4+		
1097.9 5	97 10	1881.1	4+	783.2 2+	E2	E_{γ} : weighted average of 1098.2 5 (1973De09) and 1097.5 5 (1974Ku11).
						I_{γ} : other: 81 4 (1973De09).
0						$A_2 = +0.25 4$, $A_4 = -0.05 4$, pol = +0.39 7 (1974Ku11).
1271.7 <mark>&</mark>	<2	7612.3	12^{+}	6340.6 10	+	
1282.6 5	85 9	3163.7	6+	1881.1 4+	E2	E_{γ} : weighted average of 1283.1 5 (1973De09) and 1282.0 5 (1974Ku11).
						I_{γ} : other: 32 3 (1973De09) seems in disagreement.
						$A_2 = +0.305$, $A_4 = +0.057$, pol=+0.48 <i>10</i> (1974Ku11).
1443.1 [‡] 5	3.3 [‡] 5	3324.2	4+	1881.1 4+		
1581.1 5	82 8	4744.9	8+	3163.7 6+	E2	$A_2 = +0.28 6$, $A_4 = -0.01 7$, pol = +0.59 14 (1974Ku11).
1595.7 5	62 6	6340.6	10^{+}	4744.9 8+	E2	$A_2 = +0.33 \ II, A_4 = -0.11 \ I4, \text{ pol} = +0.53 \ 22 \ (1974\text{Ku}11).$
1910.9 [‡] 9	1.5 [‡] 3	3792.1		1881.1 4+		
2205.6 ^{&}	<2	6950.5	11^{+}	4744.9 8+		This γ from 11 ⁺ to 8 ⁺ is highly unlikely, not included in the Adopted Levels, Gammas dataset.

[†] From 1974Ku11, unless otherwise noted.

[‡] From 1973De09.
[#] From M.M. Giles et al., Phys. Rev. C, accepted April 9, 2019.

[@] From $\gamma(\theta)$ and linear polarization (1974Ku11).

& Placement of transition in the level scheme is uncertain.

$\gamma(^{50}Cr)$

 $^{50}_{24}{\rm Cr}_{26}$

${}^{40}\text{Ca}({}^{16}\text{O},\alpha 2p\gamma), ({}^{12}\text{C},2p\gamma) \qquad 1974\text{Ku}11, 1973\text{De}09, 1994\text{Pa}34$

 $^{50}_{24}{\rm Cr}_{26}$