24 Mg(32 S, $\alpha 2$ p γ) 1997Le15

History							
Туре	Author	Citation	Literature Cutoff Date				
Full Evaluation	Jun Chen and Balraj Singh	NDS 157, 1 (2019)	15-Apr-2019				

⁵⁰Cr Levels

1997Le15: $E(^{32}S)=130$ MeV beam from the Tandem XTU accelerator of the Legnaro National Laboratory. Measured E γ , I γ , $\gamma\gamma$,

 $\gamma\gamma(\theta)$ (DCO), $\gamma\gamma(\theta)$ (ADO) using GASP spectrometer array equipped with 40 Compton-suppressed large volume Ge detectors and a BGO multiplicity filter with 80 elements.

Other:

1997ShZS: 40 Ca(16 O, $\alpha 2p\gamma$) reaction, only γ -ray spectrum presented, no level information.

E(level)	$J^{\pi \dagger}$	E(level)	$J^{\pi \dagger}$	E(level)	$J^{\pi \dagger}$	E(level)	J ^π †
0.0^{\ddagger}	0^{+}	6949.8 [#] 4	11^{+}	12389.7 4	(15)	16047.3 4	17^{+}
783.6 [‡] <i>3</i>	2+	7612.2 [#] 4	12^{+}	12540.1 10	14^{+}	17667.1 10	(17)
1881.5 [‡] 4	4+	9326.0 4	12^{+}	13216.4 [#] 4	15^{+}	17787.9 10	(16)
3163.8 [‡] 4	6+	9640.3 [#] 4	13^{+}	13639.8 4	14^{+}	17953.8 [#] 4	18^{+}
4744.3 [‡] 4	8+	9913.1 [#] 4	14^{+}	13918.9 <i>10</i>	15^{+}		
6339.5 [‡] 4 6754.0 4	10^{+} 10^{+}	10796.1 <i>4</i> 11012 7 <i>4</i>	13^{+} 13^{+}	$15032.2^{\#} 4$ 15806.9.4	16 ⁺ 16 ⁺		
0754.04	10	11012.7 4	15	15000.7 4	10		

[†] As proposed by 1997Le15 based on angular distribution and correlation measurements together with band associations from $\gamma\gamma$ coincidence data.

[‡] Band(A): g.s. band.

[#] Seq.(B): γ cascade based on 11⁺.

 $\gamma(^{50}\mathrm{Cr})$

Expected DCO ratios are ≈ 1 for stretched quadrupole transitions with $\Delta J=2$ ($\Delta J=0$ also possible) ≈ 0.5 for pure dipole transitions with $\Delta J=1$ for gates on stretched quadrupole transitions; $\approx =2$ for stretched quadrupole with $\Delta J=2$ ($\Delta J=0$ also possible) and ≈ 1 for pure dipole with $\Delta J=1$ for gates on pure dipole (1997Le15). Values given under comments are for gates on quadrupole transitions, unless otherwise noted.

ADO=angular distribution asymmetry from oriented nuclei. Expected ADO ratios are ≈ 1.25 for stretched quadrupole with $\Delta J=2$ ($\Delta J=0$ also possible) and ≈ 0.7 for pure dipole with $\Delta J=1$ (1997Le15).

Eγ	I_{γ}	E_i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult. [†]	Comments
196.3 <i>3</i>	2.5 8	6949.8	11^{+}	6754.0 10+	D	DCO=1.06 13
						ADO=0.88 11.
						DCO gate=D.
273.3 <i>3</i>	9.2 9	9913.1	14^{+}	9640.3 13+	D	ADO=0.71 7.
414.5 <i>3</i>	1.5 5	6754.0	10^{+}	6339.5 10+		DCO=0.96 19
610.3 <i>3</i>	73 7	6949.8	11^{+}	6339.5 10+	D+Q	DCO=1.59 9
						ADO=0.69 1.
662.4 <i>3</i>	69 7	7612.2	12^{+}	6949.8 11+	D	DCO=1.03 12
						ADO=0.71 1.
						DCO gate=D.
783.6 <i>3</i>	100 10	783.6	2^{+}	$0.0 \ 0^+$	Q	DCO=1.11 16
1097.9 <i>3</i>	100 10	1881.5	4+	783.6 2+	Q	DCO=1.06 12
1272 <i>I</i>	3.0 10	7612.2	12^{+}	6339.5 10+		
1282.3 <i>3</i>	100 10	3163.8	6+	1881.5 4+	Q	DCO=1.11 17
1580.5 <i>3</i>	100 10	4744.3	8+	3163.8 6+	Q	DCO=1.97 25

Continued on next page (footnotes at end of table)

²⁴Mg(³²S,α2pγ) **1997Le15** (continued)

$\gamma(^{50}Cr)$ (continued)

Eγ	I_{γ}	E_i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f} .	J_f^{π} N	/lult. [†]	Comments
							ADO=1.25 4.
							DCO gate=D.
1593.6 <i>3</i>	7.0 10	12389.7	(15)	10796.1 1	3+		6
1595.2 <i>3</i>	83 8	6339.5	10+	4744.3 8	8+ C)	DCO=1.86 24
						-	ADO=1.31 4.
							DCO gate=D.
1713.8 <i>3</i>	1.7 5	9326.0	12^{+}	7612.2 1	2+		ADO=1.16 <i>12</i> .
							ADO ratio is consistent with mult=Q, but $\Delta J=0$ from
							proposed level scheme.
1815.5 <i>3</i>	3.2 5	15032.2	16+	13216.4 1	5+		ADO=1.41 29.
							ADO ratio is consistent with mult=Q, but $\Delta J=1$ from
							proposed level scheme.
2009.3 3	8.2 10	6754.0	10^{+}	4744.3 8	8+ Q)	DCO=1.03 18
							ADO=1.21 16.
2028.1 3	18.6 19	9640.3	13+	7612.2 1	2+ D)	DCO=0.69 12
							ADO=0.56 4.
							DCO gate=D.
2168.1 <i>3</i>	1.7 5	15806.9	16^{+}	13639.8 1	4+ Q	2	ADO=1.55 31.
2204.2 3	5.66	13216.4	15^{+}	11012.7 1	3+ Q	2	ADO=1.62 25.
2300.9 <i>3</i>	20.9 21	9913.1	14^{+}	7612.2 1	2+ Q	2	DCO=2.00 24
							ADO=1.52 8.
							DCO gate=D.
2476.9 <i>3</i>	2.8 6	12389.7	(15)	9913.1 1	4+ D)	DCO=0.57 10
							ADO=0.74 16.
2492.1 3	1.0 5	15032.2	16^{+}	12540.1 1	4+		
2572.6 3	2.0 7	9326.0	12^{+}	6754.0 1	.0+ (0	Q)	ADO=1.19 16.
2590.5 <i>3</i>	4.5 10	15806.9	16^{+}	13216.4 1	5+		
2627.1 <i>3</i>	1.8 5	13639.8	14^{+}	11012.7 1	3 ⁺ D)	ADO=0.82 25.
2830.9 <i>3</i>	3.4 <i>3</i>	16047.3	17+	13216.4 1	5+ Q	2	ADO=1.53 38.
2921.6 <i>3</i>	2.0 5	17953.8	18+	15032.2 1	.6 ⁺ Q	2	ADO=1.79 62.
2987 1	<1.0	9326.0	12+	6339.5 1	.0+		
3183.9 <i>3</i>	11.3 11	10796.1	13^{+}	7612.2 1	2 ⁺ D)	DCO=0.75 12
							ADO=0.70 6.
							DCO gate=D.
3303.3 <i>3</i>	3.0 3	13216.4	15+	9913.1 1	4 ⁺ D)	DCO=0.48 8
3400.5 <i>3</i>	8.4 8	11012.7	13+	7612.2 1	2+ D)	DCO=0.76 <i>13</i>
							ADO=0.79 11.
3577.1 10	3.0 5	13216.4	15+	9640.3 1	3+		
3748.2 10	1.2 5	17667.1	(17)	13918.9 1	5		
4005.8 10	3.3 4	13918.9	15+	9913.1 1	4+ D)	DCO=0.38 6
	6.0				a +		ADO=0.88 20.
4927.9 10	63	12540.1	14+	7612.2 1	2*		
5119.1 10	11.6	15032.2	16+	9913.1 1	.4* Q	2	ADO=1.32 51.
5398.2 10	5.6 6	17787.9	(16)	12389.7 (15)		

[†] Deduced by evaluators from measured DCO and ADO ratios in 1997Le15 according to the statements for expected values of DCO and ADO in 1997Le15, with $\Delta J=2$ for pure Q and $\Delta J=1$ for pure D.

 $^{50}_{24}Cr_{26}$

3

24 Mg(32 S, α 2p γ) 1997Le15

 10^+

8⁺

6+

4⁺

2+

 $\mathbf{0}^+$

 $^{50}_{24}{\rm Cr}_{26}$