Adopted Levels

	Hist	ory	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Jun Chen and Balraj Singh	NDS 157, 1 (2019)	15-Apr-2019

 $Q(\beta^{-}) = -13449 \ 48; \ S(n) = 15820 \ SY; \ S(p) = 170 \ SY; \ Q(\alpha) = -7490 \ SY$ 2017Wa10

 $Q(\beta^{-})$ from mass excess of $-17585 \ 41$ for ⁵⁰Co and $-4136 \ 25$ for ⁵⁰Ni (2007Do17, IMME analysis). Other: $-13510 \ 640$ (syst, 2017Wa10).

Estimated $\Delta S(n)=640$, $\Delta S(p)=400$, $\Delta Q(\alpha)=570$ (2017Wa10).

Q(\varepsilon p)=12700 400, S(2n)=35270 640, S(2p)=2910 400 (syst, 2017Wa10). Q(\varepsilon 2p)=10614 400 (syst, deduced by evaluator from mass excesses in 2017Wa10).

1987Po04: first identification of ⁵⁰Co isotope. Fragmentation reaction used to produce ⁵⁰Co isotope at GANIL facility. Primary beam: ⁵⁸Ni at 55 MeV/nucleon; target: natural Ni and Al. Fragment separator: LISE. Identification: magnetic rigidity, TOF, ΔE, E.

1996Fa09: experiment at FRS in GSI. Fragmentation reaction with ⁵⁸Ni primary beam of 650 MeV/nucleon and beryllium target. Identification by TOF, position information, magnetic field values and energy loss. Implantation into a Si telescope of 7 detectors. Coincidences between fragments and protons.

2007Do17: fragmentation reaction used to produce ⁵⁰Ni isotope at SISSE/LISE3 facility in GANIL. Primary beam: ⁵⁸Ni²⁶⁺ at 74.5 MeV/nucleon; target=natural Ni. Fragment separator= α -LISE3. Identification by energy loss, residual energy and time-of-flight measurements using two micro-channel plate (MCP) detectors and Si detectors. Double-sided silicon-strip detectors (DSSSD) and a thick Si(Li) detector were used to detect implanted events, charged particles and β particles. γ rays were detected by Ge detectors. Coincidences measured between charged particles, β rays and γ rays.

2016Or03: ⁵⁰Co produced in Ni(⁵⁸Ni,X),E=74.5 MeV/nucleon reaction at GANIL. Additional information 1.

⁵⁰Co Levels

Cross Reference (XREF) Flags

⁵⁰Ni ε decay (18.5 ms)

E(level)	J^{π}	T _{1/2}	XREF	Comments
0 (6 ⁺)		38.8 ms 2		$\% \varepsilon + \% \beta^+ = 100; \ \% \varepsilon p = 70.5 \ 7 \ (2007 \text{Do17}); \ \% \varepsilon 2 p = ?$ T=(2)
				T _{1/2} : from 2007Do17, measured by time correlation of implantation events due to ⁵⁰ Co and subsequent emission of protons. Other: 44 ms 4 (1996Fa09). Weighted average of two values of half-lives is 39.8 ms 21 with a χ^2 =1.4, whereas unweighted average is 41.4 ms 26.
				 J^π,T: isobaric multiplet systematics. The isobaric analog state of this level is identified in ⁵⁰Fe at 8460 keV the J^π assignment of which is based on its mirror nucleus ⁵⁰Cr. %εp=70.5 7 is most likely total delayed proton decay, including possible ε2p decay, deduced from time spectrum of events with energy >900 keV in the charged-particle spectrum. Possible small contributions from delayed-α and delayed-2p decays are ignored. Other: 54 <i>13</i> (1996Fa09). Only two proton peaks detected.
4835 47	$(0)^{+}$		A	%p=100 J ^{π} : log <i>ft</i> =3.42 from 0 ⁺ ; identified as an isobaric analog state of ⁵⁰ Ni ground state based on strong β decay of ⁵⁰ Ni to this state.