Adopted Levels

History				
Туре	Author	Citation	Literature Cutoff Date	
Full Evaluation	Jun Chen and Balraj Singh	NDS 157, 1 (2019)	15-Apr-2019	

 $Q(\beta^{-})=21070 SY; S(n)=1270 SY; S(p)=20640 SY; Q(\alpha)=-17660 SY$ 2017Wa10

Estimated $\Delta Q(\beta^{-})=780$, $\Delta S(n)=850$, $\Delta S(p)=900$, $\Delta Q(\alpha)=920$ (2017Wa10).

 $Q(\beta^{-}n)=16860\ 720$, $S(2n)=4120\ 780\ (syst,\ 2017Wa10)$. $S(2p)=44540\ (2019Mo01,\ theory)$. $Q(\beta^{-}2n)=14590\ 980$, $Q(\beta^{-}3n)=8890\ 930\ (syst)$, deduced by evaluators from mass excesses in 2017Wa10.

2009Ta05, 2009Ta24: ⁵⁰Cl identified by fragmentation of ⁷⁶Ge beam at 132 MeV/nucleon at NSCL facility using A1900 fragment separator combined with S800 analysis beam line to form a two stage separator system. The transmitted fragments were analyzed event-by-event in momentum and particle identification. The nuclei of interest were stopped in eight Si diodes which provided measurement of energy loss, nuclear charge and total kinetic energy. The time-of-flight of each particle that reached the detector stack was measured in four different ways using plastic scintillators, Si detectors, and parallel-plate avalanche counters. The simultaneous measurement of ΔE signals, the magnetic rigidity, total kinetic energy and the time-of-flight (TOF) provided unambiguous identification of the atomic number, charge state and mass number.

Theory references: consult the NSR database (www.nndc.bnl.gov/nsr/) for two references for structure calculations. Additional information 1.

⁵⁰Cl Levels

E(level)	Comments		
0	$\%\beta^{-}=100; \ \%\beta^{-}n=?; \ \%\beta^{-}2n=?; \ \%\beta^{-}3n=?$		
	β^- is the only possible decay mode, followed by β -delayed neutron emissions, thus 100% β^- decay is assigned by inference, although, no radiation from the decay of ⁵⁰ Cl has yet been observed.		

Theoretical $T_{1/2}=5.5$ ms, $\%\beta^{-}n=66$, $\%\beta^{-}2n=18$ (2019Mo01).

Theoretical $T_{1/2}=17.2$ ms, $\%\beta^{-}n=5.2$, $\%\beta^{-}2n=50.6$, $\%\beta^{-}3n=2.6$ (2016Ma12).

E(level): observed activity is assumed to correspond to the ground state of 50 Cl.

Measured cross section=0.037 pb +43-26, received in e-mail reply of Nov 11, 2009 from O. Tarasov (first author of 2009Ta05).

E(level): fragment observed by 2009Ta05 is assumed to be in the ground state of 50 Cl.

 J^{π} : 2⁻,3⁻ from $\Omega = 1/2^+$ for proton and $\Omega = 5/2^-$ for neutron in theoretical calculations by 2019Mo01.

 $T_{1/2}$: half-life of the decay of ⁵⁰Cl has not yet been measured. $T_{1/2}$ >650 ns from time-of-flight of 620-650 ns, given in e-mail reply of Sept 23, 2009 from O. Tarasov. From a general decreasing trend of half-lives with increasing neutron number, $T_{1/2}$ for ⁵⁰Cl g.s. is expected to be <50 ms, based on measured half-lives of 101 ms for ⁴⁷Cl, 232 ms for ⁴⁶Cl, 413 ms for ⁴⁵Cl, and 560 ms for ⁴⁴Cl available in the ENSDF database (as of March 25, 2019). 2017Au03 give 20 ms from systematic trend.