⁵²K β⁻2n decay (110 ms) 2006Pe16

Type Author Citation Literature Cutoff Date

Full Evaluation Jun Chen and Balraj Singh NDS 157, 1 (2019) 15-Apr-2019

Parent: 52 K: E=0; J $^{\pi}$ =(2⁻); T_{1/2}=110 ms 5; Q(β -2n)=6307 30; % β -2n decay=2.3 3

 $^{52}\text{K-J}^{\pi}$: From systematic trend in 2017Au03 compilation.

⁵²K-T_{1/2}: From weighted average of values in 1983La23, 1985Hu03 and 2006Pe16.

 52 K-Q(β^{-2} n): Deduced by evaluators from mass excesses of 52 K, 50 Ca and neutron in 2017Wa10.

 52 K- $^{8}\beta^{-}$ 2n decay: $^{8}\beta^{-}$ 2n=2.3 3 in 2006Pe16 determined from measured P_n/P_{2n} ratio, where P_n is from measured $I(n)/I(\beta^{-})$ and using detector efficiencies for neutrons and β^{-} .

2006Pe16: 52 K isotope produced in spallation reaction by bombarding a UC_x target by a 1.4 GeV proton beam produced by the CERN proton-synchrotron booster (PSB). Spallation products analyzed using the high resolution separator (HRS). Measured E γ , $\gamma\gamma$, β , β n coin, β ny coin, β ny coin, and $\beta\gamma\gamma$ coin. The γ rays were detected using two large Ge clusters from the MINIBALL array. Low energy neutrons detected using six detectors each composed of a thick BC400 plastic scintillator. High energy neutrons were detected using 11 curved BC400 scintillating plastic bars from the TONNERRE array. The β particles were detected using a cylindrical plastic scintillator.

⁵⁰Ca Levels

$$\frac{\text{E(level)}}{0} \quad \frac{\text{J}^{\pi^{\dagger}}}{0^{+}}$$
1027 I 2⁺

† From Adopted Levels.

 γ (50Ca)

Iy normalization: 2006Pe16 give absolute photon intensity.

$$\frac{\text{E}_{\gamma}}{1027 \ l} = \frac{\text{I}_{\gamma}^{\dagger}}{0.55 \ 6} = \frac{\text{E}_{i}(\text{level})}{1027} = \frac{\text{J}_{i}^{\pi}}{2^{+}} = \frac{\text{E}_{f}}{0} = \frac{\text{J}_{f}^{\pi}}{0^{+}}$$

† Absolute intensity per 100 decays.

Delayed Neutrons (50Ca)

† Absolute intensity per 100 decays.

⁵²K β ⁻2n decay (110 ms) 2006Pe16

Decay Scheme

Intensities: $I_{(\gamma+ce)}$ per 100 parent decays

