Type	${ }^{3} \mathbf{H}(\mathbf{d}, \mathbf{X}),{ }^{4} \mathrm{He}(\mathbf{n}, \mathbf{X})$	$2002 \mathrm{Ti10}$	Literature Cutoff Date
	History		
Full Evaluation	X. Hu, D. R. Tilley, J. H. Kelley	NP A708,3 (2002)	23-Aug-2001
	${ }^{5} \mathrm{He}$ Level		

Levels are based on the complex poles and residues of the S-matrix (extended R-matrix). See 2002Ti10 for a discussion of the adopted (S-matrix) levels. The fits are based on data from all possible reactions for the two-body channels $\mathrm{d}+{ }^{3} \mathrm{H}$ and $\mathrm{n}+{ }^{4} \mathrm{He}$ at CM energies corresponding to $\mathrm{E}_{\mathrm{x}}<23 \mathrm{MeV}$. In addition, $\mathrm{n}+4$ he* channels are included to approximate the effects of three-body breakup processes.

$\underline{\text { E(level) }}$	J^{π}	$\mathrm{T}_{1 / 2}$	Comments
0.0	$3 / 2^{-}$	0.648 MeV	\% $\mathrm{n}=$?
			$\mathrm{T}=1 / 2$
			$\Gamma_{\mathrm{n}}=66.578 \mathrm{MeV} ; \Gamma_{\mathrm{n} 0}=0.578 \mathrm{MeV}$ Widthd=8.80 MeV.
			Note that the partial Γ corresponding to excited ${ }^{4} \mathrm{He}$ in the final state is 66 MeV , and (large) partial widths in closed channels have meaning only as asymtotic normalization constants. $\% \mathrm{n}=$?
1270	$1 / 2^{-}$	5.57 MeV	$\mathrm{T}=1 / 2$
			$\Gamma_{\mathrm{n}}=4.45 \mathrm{MeV} ; \Gamma_{\mathrm{n} 0}=3.18 \mathrm{MeV}$
			Widthd=38.0 MeV.
			Note that the partial Γ corresponding to excited ${ }^{4} \mathrm{He}$ in the final state is 1.27 MeV . (large) partial widths in closed channels have meaning only as asymtotic normalization constants.
16840	$3 / 2^{+}$	74.5 keV	$\% \mathrm{n}=? ; \% \mathrm{~d}=? ; \% \mathrm{IT}=$?
			$\mathrm{T}=1 / 2$
			$\Gamma_{\mathrm{n}}=40 \mathrm{keV}$
			Widthd=25 keV.
19140	$5 / 2^{+}$	3.56 MeV	$\% \mathrm{n}=? ; \% \mathrm{~d}=$?
			$\mathrm{T}=1 / 2$
			$\Gamma_{\mathrm{n}}=3 \mathrm{keV}$
			Widthd $=1.62 \mathrm{MeV}$.
19260	$3 / 2^{+}$	3.96 MeV	$\% \mathrm{n}=? ; \% \mathrm{~d}=$?
			$\mathrm{T}=1 / 2$
			$\Gamma_{\mathrm{n}}=14 \mathrm{keV}$
			Widthd $=1.83 \mathrm{MeV}$.
19310	$7 / 2^{+}$	3.02 MeV	$\% \mathrm{n}=? ; \% \mathrm{~d}=$?
			$\mathrm{T}=1 / 2$
			$\Gamma_{\mathrm{n}}=45 \mathrm{keV}$
			Widthd= 1.89 MeV .
19960	$3 / 2^{-}$	1.92 MeV	$\% \mathrm{n}=? ; \% \mathrm{~d}=? ; \% \mathrm{p}=$?
			$\mathrm{T}=1 / 2$
			$\Gamma_{\mathrm{n}}=865 \mathrm{keV} ; \Gamma_{\mathrm{n} 0}=3 \mathrm{keV}$
			Widthd=325 keV.
			Note that the partial Γ corresponding to excited ${ }^{4} \mathrm{He}$ in the final state is 862 keV . $\% \mathrm{n}=$? $\% \mathrm{~d}=$?
21250	$3 / 2^{+}$	4.61 MeV	$\mathrm{T}=1 / 2$
			$\Gamma_{\mathrm{n}}=98 \mathrm{keV}$
			Widthd=2.38 MeV.
21390	$5 / 2^{+}$	3.95 MeV	$\% \mathrm{n}=? ; \% \mathrm{~d}=$?
			$\mathrm{T}=1 / 2$
			$\Gamma_{\mathrm{n}}=91 \mathrm{keV}$
			Widthd $=2.12 \mathrm{MeV}$.
21640	$1 / 2^{+}$	4.03 MeV	$\% \mathrm{n}=? ; \% \mathrm{~d}=? ; \% \mathrm{p}=?$

${ }^{3} \mathbf{H}(\mathbf{d}, \mathbf{X}),{ }^{4} \mathrm{He}(\mathbf{n}, \mathrm{X}) \quad 2002 \mathrm{Ti10}$ (continued)
${ }^{5} \mathrm{He}$ Levels (continued)

E(level)	J^{π}	$\mathrm{T}_{1 / 2}$	Comments
			$\begin{aligned} & \hline \mathrm{T}=1 / 2 \\ & \Gamma_{\mathrm{n}}=776 \mathrm{keV} ; \Gamma_{\mathrm{n} 0}=50 \mathrm{keV} \\ & \text { Widthd=878 keV. } \end{aligned}$
23970	7/2 ${ }^{+}$	5.44 MeV	Note that the partial Γ corresponding to excited ${ }^{4} \mathrm{He}$ in the final state is 726 keV . $\% \mathrm{n}=? ; \% \mathrm{~d}=?$ $\mathrm{T}=1 / 2$
24060	5/2 ${ }^{-}$	5.23 MeV	$\begin{aligned} & \Gamma_{\mathrm{n}}=53 \mathrm{keV} \\ & \text { Widthd }=2.85 \mathrm{MeV} . \\ & \% \mathrm{n}=? ; \% \mathrm{~d}=? \\ & \mathrm{~T}=1 / 2 \\ & \Gamma_{\mathrm{n}}=13 \mathrm{keV} \\ & \text { Widthd }=2.18 \mathrm{MeV} . \end{aligned}$
35.7×10^{3} ? 4		$\approx 2 \mathrm{MeV}$	$\begin{aligned} & \% \mathrm{n}=? ; \% \mathrm{~d}=? \\ & \mathrm{~T}=1 / 2 \end{aligned}$

$$
\underline{\gamma\left({ }^{5} \mathrm{He}\right)}
$$

$\frac{\mathrm{E}_{\gamma}}{15544}$	$\frac{\mathrm{E}_{i}(\text { level })}{}$		$\frac{\mathrm{J}_{i}^{\pi}}{16840}$		E_{f} $3 / 2^{+}$	$\begin{array}{l}1270 \\ 16810\end{array}$
16840		$3 / 2^{+}$		0.0	$3 / 2^{-}$	

$$
{ }^{3} \mathbf{H}(\mathbf{d}, \mathbf{X}),{ }^{4} \mathrm{He}(\mathbf{n}, \mathbf{X}) \quad \text { 2002Ti10 }
$$

Level Scheme

