2 H(⁶He,³He)

History						
Туре	Author	Citation	Literature Cutoff Date			
Full Evaluation	J. E. Purcell, C. G. Sheu	ENSDF	28-Feb-2019			

This reaction is interpreted as one in which a proton from the incident ⁶He is transferred to the ²H target allowing the low lying states of ⁵H to be populated.

- 2003Si15: The experiment was at JINR at Dubda. The 150 MeV ⁶He beam was directed onto a liquid ²H target. The ³He reaction product and the ³H from the decay of ⁵H were detected and the ⁵H spectrum determined by the missing mass method. A single narrow resonance structure was observed at E_{res} =1.8 MeV above the ³H+2n threshold which the authors assume to be the 1/2⁺ ground state of ⁵H. See related discussion in (2003Te06,2003Te16).
- 2004St18: This experiment was also performed at JINR at Dubna. A primary ¹¹B beam with energy 32 MeV/nucleon colliding with a Be target produced a secondary ⁶He beam with an energy of 132 MeV which struck a ²H gas target. The ³He reaction product and the ³H from the decay of ⁵H were detected and the ⁵H spectrum determined by the missing mass method. The authors interpret the results as two resonances, one corresponding to the $1/2^+$ ground state at $E_{res}=1.8$ MeV 2 with an observable width of $\Gamma=1.3$ MeV 5. A second broad resonance is shown at around 7 MeV in the figure, though discussion on the second resonance is limited to the statement, "one can only say that, in the present case, it seems to be a rather broad resonance-like structure".
- 2005Te05: This experiment was also performed at JINR at Dubna. The secondary ⁶He beam with an energy of 132 MeV collided with a ²H target, the ³He reaction product and the ³H from the decay of ⁵H were detected and the ⁵H spectrum determined by the missing mass method. A resonance at E_{res} =2.2 MeV 3 and width $\Gamma \approx 2.5$ MeV was observed. The authors also comment that the observed spectrum shows the effects of interference between the 1/2⁺ state and a higher energy 3/2⁺ and 5/2⁺ doublet. The reaction ²H(⁶He,³H)⁵He was also studied and the T=3/2 analog of the ground ⁵H was observed in ⁵He.
- 2017Wu03: Experiment was conducted at NSCL at Michigan State University. The ⁶He secondary beam with energy 55 MeV/nucleon was obtained from ¹⁸O primary beam with energy 120 MeV/nucleon on a ⁹Be target. The ⁶He beam bombarded a thin Cd₂ target. The ³He reaction product and the ³H from the decay of ⁵H were detected. The resonance energy and width were determined to be $E_{res}=2.4$ MeV *3* above the ³H+2n threshold and $\Gamma=5.3$ MeV *4*. Analysis of the data suggested that the ⁵H decay into ³H+2n showed a slight preference for dineutron emission process over the democratic two neutron emission process.
- In the discussion of (2017Wu03), the impact of energy conservation and momentum matching on the observed lineshape are examined for this extremely negative $Q(\beta^-)$ value reaction. Distortions of the lineshape are investigated for various experimental conditions of their results and past results. The total collection of reported parameters for ${}^{5}H_{g.s.}$ is rather discrepant; however, the quality of the data in (2017Wu03) that is attributed to suppression of the high-energy yield due to momentum matching effects, along with their detailed analysis and discussion weigh heavily in the adoption of their results for ${}^{5}H_{g.s.}$.
- It is also noted in (2017Wu03) "...that ⁵H is important in the context of the hypernucleus ${}^{6}_{\Lambda}$ H..." The point is that adding a Λ to 5 H could produce a bound ${}^{6}_{\Lambda}$ H even if 5 H is unbound since the Λ provides an additional attractive interaction. Experimental evidence for bound ${}^{6}_{\Lambda}$ H is given in (2012Ag06) and against a bound ${}^{6}_{\Lambda}$ H in (2017Ho15). Theoretical discussions of ${}^{6}_{\Lambda}$ H are given in (2013Ga51,2013Hi03) and references therein. (We are greatful to John Millener (BNL) for his input regarding ${}^{6}_{\Lambda}$ H and its relation to 5 H.).

⁵H Levels

E(level)	$J^{\pi \dagger}$	Г	$E_{res}(^{3}H+2n)(MeV)$	Comments
0	(1/2 ⁺)	5.3 MeV 4	2.4 3	E(level), Γ : From (2017Wu03); these results are adopted as the ground state properties. Other reported values are $E_{res}(^{3}H+2n)=1.8$ MeV 2, $\Gamma=1.3$ MeV 5 (2004St18); $E_{res}(^{3}H+2n)=2.2$ MeV 3, $\Gamma\approx2.5$ MeV (2005Te05).
≈5?			≈7	E(level): Also see (2003Si15) who report a narrow resonance (Γ <0.5 MeV) with E _{res} (³ H+2n) \approx 1.8 MeV (2003Si15). E(level): From (2004St18). Γ : Broad.

[†] From systematics.

1