¹H(⁶He,²He) 2001Ko52

	History					
Туре	Author	Citation	Literature Cutoff Date			
Full Evaluation	J. E. Purcell, C. G. Sheu	ENSDF	28-Feb-2019			

1997Ko07: The experiment was performed at the RIKEN research facility with primary ¹⁵N beam with energy 115 MeV/nucleon. The secondary beam included ⁶He with energy 83 MeV/nucleon. The target was CH₂. The separation energy spectrum of the two outgoing protons was measured. A broad resonance was reported corresponding to a ⁵H state at $E_{res}=1.1$ 4(stat) 3(syst) MeV above the ³H+2n threshold. This experiment is also discussed in (1997KoZV).

2001Te07,2001Ko52,2002Ko24: As reported in (2001Te07), the experiment was performed at Flerov Laboratory of Nuclear Reactions in Dubna. The ⁶He secondary beam with energy 37 MeV/nucleon was obtained from a primary beam of 42 MeV/nucleon ¹³C on a beryllium target. The target for the secondary beam was hydrogen gas. Measurements of the two protons and ³H from the decay of ⁵H allowed the energy of the ⁵H to be determined. The result was a peak E_{res}≈2 MeV above the ³H+2n threshold.

In what appears to be the same experiment as briefly reported in (2001Te07), the authors of (2001Ko52) give more experimental details and analysis of the measurements. Here, the energy of the secondary ⁶He beam is given as 36 MeV/nucleon. The resonance parameters obtained are $E_{res}=1.7$ MeV 3 and $\Gamma=1.9$ MeV 4 for the energy above the ³H+2n threshold and width, respectively. Analysis of the two protons showed that they came from a virtual singlet state of ²He and that the ⁵H state formed in the reaction was likely the expected ground state with $J^{\pi}=1/2^+$. This experiment is also discussed in (2003Ko68,2004Gr17,2004Wo10).

See related measurements reported in (2001Go35).

⁵H Levels

E(level)	$J^{\pi \dagger}$	Γ^{\dagger}	$E_{res}(^{3}H+2n)(MeV)^{\dagger}$	Comments
0	$(1/2^+)$	1.9 MeV 4	1.7 3	J^{π} : From systematics. E(level): See also $E_{res}=1.1$ 4(stat) 3(syst) MeV (1997Ko07).

[†] From (2001Ko52).

 ${}_{1}^{5}H_{4}$