$^{12}C(^{40}Ca, 3p\gamma), ^{24}Mg(^{32}S, 3p\alpha\gamma)$ 1991Ca23, 1978Me19, 1978Fo09

History						
Туре	Author	Citation	Literature Cutoff Date			
Full Evaluation	T. W. Burrows ^a	NDS 109, 1879 (2008)	14-Jul-2008			

Also contains 27 Al(28 Si, $\alpha 2p\gamma$), 40 Ca(12 C,3p\gamma).

1978Fo09: ²⁴Mg(³²S,3p $\alpha\gamma$),⁴⁰Ca(¹²C,3p γ) E(³²S)=110 MeV. Measured γ 's, $\gamma\gamma$'s, and $\gamma(\theta)$. Also measured γ -excitation functions (E(¹²C)=20-62 MeV).

1978Me19: ²⁷Al(²⁸Si, α 2py) E=65, 72, 77, and 82 MeV. Measured γ 's and γ -excitation functions. Deduced relative σ .

1991Ca23: ¹²C(⁴⁰Ca,3p γ) E=160 MeV. Measured γ 's, recoil- $\gamma(\theta=40^\circ, 101^\circ, 117^\circ, 142.5^\circ)$, recoil- γ coin, and recoil- $\gamma\gamma$ coin;

Compton-suppressed Ge, recoil separator. See 1994Ca04 for comparison with cross-conjugate nucleus ⁴⁷Ti.

2005LiZX: ¹²C(⁴⁰Ca,3p γ) E=230 MeV. Measured γ 's and (recoil) γ -coin; FMA stand-alone experiment with one clover γ -ray detector At 90° to the beam direction. FMA focal-plane detectors consisted of micro-channel plate detectors for determination of position and ionization chamber for Z-identification through energy loss and total energy of the recoils. Test experiment to investigate if a study of ⁴⁹Fe spectroscopy is feasible.

Others: see 1995Bu23.

⁴⁹V Levels

E(level)	$J^{\pi \dagger}$	Comments
0‡	7/2-#	
89.9 [‡] 6	5/2 ⁻ @	
747.9 ^{&} 8	3/2+ @	
1021.6 [‡] 4	11/2 ^{-@}	
1139.9 <mark>&</mark> 7	5/2+ [#]	
1154.8 [‡] 5	9/2 ^{-#}	
1602.9 <mark>&</mark> 6	7/2+ #	
2177.9 ^{&} 5	9/2+ @	
2263.3 [‡] 5	15/2 ^{-@}	
2671.7 ^{<i>a</i>} 8	$(11/2)^{-}$	
2727.6 ^{<i>a</i>} 6	15/2-@	
2740.9 ^{x} 7	11/2+	J^{π} : 11/2 from recoil- $\gamma(\theta)$ (1991Ca23). π =+ from the Adopted Levels.
2861.8 ⁺ 6	13/2-@	
3325.5+ 6	$(17/2^{-})$	J^{π} : 13/2,17/2 from $\Delta J=1$ D γ to 15/2 ⁻ (1991Ca23). J>15/2 from excit (1978Fo09). Member of yrast band.
3742.6 [‡] 7	(19/2 ⁻)	J^{π} : 15/2,19/2 from $\Delta J=2$) Q or $\Delta J=0$ D γ to 15/2 ⁻ and $\Delta J=1$ D to 13/2,17/2 (1991Ca23). Member of yrast band.
5530.0 [‡] 8	$(21/2^{-})^{b}$	
5690.1 [‡] 9	$(23/2^{-})^{b}$	
6845.1 ^{<i>a</i>} 9	(23/2 ⁻)	J^{π} : $\Delta J=1 \text{ D } \gamma$ from (25/2 ⁻) and D γ to (23/2 ⁻) (1991Ca23). Member of negative-parity side band.
7801.7 [‡] 9	(25/2 ⁻) ^b	
8416.3 [‡] 10	$(27/2^{-})$	J^{π} : strong $\Delta J=1$ D γ to 25/2 ⁻ and weak $\Delta J=2$ Q γ to 23/2 ⁻ (1991Ca23).

[†] Parentheses added by the evaluator. 1978Fo09 and 1991Ca23 assumed that $J_i=J_f+1$ for stretched ($\Delta J=1$) dipole transitions and $J_i=J_f+2$ for stretched ($\Delta J=2$) quadrupole transitions.

[‡] Band(A): 5/2⁻ yrast band (1991Ca23).

[#] From the Adopted Levels.

[@] Recoil $\gamma(\theta)$ (1991Ca23) confirm spin and parity assignments adopted In 1995Bu23.

& Band(B): $K^{\pi}=3/2^+$ rotational band (1991Ca23).

^{*a*} Band(C): negative parity side band (1991Ca23).

^b From stretched ($\Delta J=1$) dipole or stretched ($\Delta J=2$) quadrupole cascade and membership In yrast band (1991Ca23).

¹²C(⁴⁰Ca,3pγ),²⁴Mg(³²S,3pαγ) 1991Ca23,1978Me19,1978Fo09 (continued)

$\gamma(^{49}V)$

Coincidences are from 1991Ca23.

E(E)	TV Ave:	rage of th	e followi	ing gamma energ	ies:			ار م م م م ار ۸	10705-00
1978Me19	1978F009 1991Ca23	1978Me19	1991Ca2:	5				Адортед	19786009
±0.4	±0.5	±0.6	<u> </u>	± 1				±0.5	±0.6
±1									
463.9	463.7	463.9	465	Unweighted			1241.7 4	1242.1	1242.1
1021.5	1021.4	1021.5	1022	Weighted			1479.1 9	1478.2	
1062.4	1061.9	1063.0	1063	Weighted					
E_{γ}^{\dagger}	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. [‡]	δ#			
90 1	2	89.9	$5/2^{-}$	0 7/2-	D [@]				
133 ^d 1	0.1 ^d	1154.8	9/2-	1021.6 11/2-					
134 ^d 1	0.1 ^d	2861.8	$13/2^{-}$	2727.6 15/2-					
160 1	1	5690.1	$(23/2^{-})$	5530.0 (21/2 ⁻)	~				
392 1	0.2	1139.9	$5/2^{+}$	747.9 3/2+	@				
416.9 <mark>&/</mark>	5 28	3742.6	$(19/2^{-})$	3325.5 (17/2 ⁻)	D+Q ^{#@}	-2.0 4			
463 ^d 1	2 ^d	1602.9	$7/2^{+}$	1139.9 5/2+					
463.9 d 4	4 3 ^d	2727.6	$15/2^{-}$	2263.3 15/2-	D,Q ^a				
464 ^d 1	14 d	3325.5	$(17/2^{-})$	2861.8 13/2-	D,Q ^a				
563 1	0.5	2740.9	$11/2^{+}$	2177.9 9/2+					
575 1	0.3	2177.9	9/2+	1602.9 7/2+	0				
597.1 ⁴⁸	^c 5 8 ^d	3325.5	$(17/2^{-})$	2727.6 15/2-	D [@]				
599 ^{db} 1	8 ^d	2861.8	13/2-	2263.3 15/2-	D [@]				
613 <i>1</i>	2	8416.3	$(27/2^{-})$	7801.7 (25/2 ⁻)	D [@]				
658 1	4	747.9	$3/2^+$	89.9 5/2-	D				
855 1	0.5	1602.9	7/2	747.9 3/2	- @				
956 I	8	7801.7	$(25/2^{-})$	$6845.1 (23/2^{-})$	De				
1021.5	4 100 ^{<i>a</i>}	1021.6	11/2-	0 7/2-	D,Q ⁴				
1023 ^{<i>a</i>} 1	5 ^a	2177.9	$9/2^+$	1154.8 9/2-					
1038 1	0.7	2177.9	$9/2^{-1}$	1139.9 5/2	D @				
1062.44C	4 38 ^d	3325.5	(1/2)	2263.3 15/2	De				
1065 ^a 1	24	1154.8	9/2-	89.9 5/2-					
1138 ^a 1	0.7^{a}	2740.9	11/2+	1602.9 7/2+					
1140 ^{<i>a</i>} 1	4 ^{<i>a</i>}	1139.9	5/2+	0 7/2-	D				
1155 ^{ab} I	5 ^a	1154.8	9/2-	$0 7/2^{-}$	D [@]				
1155 ^{ab} I	8 ^a	6845.1	$(23/2^{-})$	5690.1 (23/2 ⁻)	D [@]				
1156 ^d 1	11 ^d	2177.9	9/2+	1021.6 11/2-	D [@]				
1241.7 <mark>0</mark> 4	4 93	2263.3	$15/2^{-}$	1021.6 11/2-	D,Q ^a				
1315 1	0.5	6845.1	$(23/2^{-})$	5530.0 (21/2 ⁻)	_				
1479.1 ⁰ 9	9 26	3742.6	$(19/2^{-})$	2263.3 15/2-	D,Q ^a				
1513 I	2	1602.9	1/2*	89.9 5/2-					
1517 ⁴ 1	1 ^{<i>u</i>}	2671.7	$(11/2)^{-}$	1154.8 9/2-					
1580 1	2 1	2740.9 1602.9	$\frac{11/2}{7/2^+}$	$1134.8 \ 9/2 \ 0 \ 7/2^{-}$					
1650 1	3	2671.7	$(11/2)^{-}$	$1021.6 \ 11/2^{-1}$					
1706 ^d 1	4^d	2727.6	15/2-	1021.6 11/2-	D.O ^a				
1707^{d} 1	$\frac{1}{4}d$	2861.8	13/2-	1154.8 9/2-	D_{0}^{a}				
1787 1	7	5530.0	$(21/2^{-})$	3742.6 (19/2 ⁻)	D, 2				
			/	· · /					

Continued on next page (footnotes at end of table)

$^{12}C(^{40}Ca, 3p\gamma), ^{24}Mg(^{32}S, 3p\alpha\gamma)$ 1991Ca23,1978Me19,1978Fo09 (continued)

$\gamma(^{49}V)$ (continued)

E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [‡]
1840 <i>1</i>	0.4	2861.8	13/2-	1021.6	11/2-	
1947 <mark>b</mark> 1	37	5690.1	$(23/2^{-})$	3742.6	(19/2 ⁻)	D,Q ^a
2111 <i>I</i>	9	7801.7	$(25/2^{-})$	5690.1	$(23/2^{-})$	D [@]
2178 <i>1</i>	2	2177.9	9/2+	0	7/2-	
2204 1	3	5530.0	$(21/2^{-})$	3325.5	$(17/2^{-})$	
2271 <i>1</i>	0.8	7801.7	$(25/2^{-})$	5530.0	$(21/2^{-})$	
3102 1	1	6845.1	$(23/2^{-})$	3742.6	$(19/2^{-})$	
5690 <i>1</i>	0.9	8416.3	$(27/2^{-})$	2727.6	15/2-	(Q) <i>a</i>

[†] From 1991Ca23, except As noted. $\Delta E(\gamma)$ estimated by the evaluator from experimental details given In 1990Ca06.

[‡] From recoil- $\gamma(\theta)$ In 1991Ca23, except As noted.

[#] From $\gamma(\theta)$ In 1978Fo09.

^(a) Stretched ($\Delta J=1$) dipole transition from recoil- $\gamma(\theta)$. ^(a) From 1978F009. ^(a) Stretched ($\Delta J=2$) quadrupole or $\Delta J=0$ dipole transition from recoil- $\gamma(\theta)$.

^b Also reported by 2005LiZX.

^c Placed As deexciting a 1063 state by 1978Me19.

^d Multiply placed with intensity suitably divided.

Legend

 $^{49}_{23}V_{26}$

4

 ${}^{49}_{23}V_{26}$