Adopted Levels

History				
Туре	Author	Citation	Literature Cutoff Date	
Full Evaluation	Balraj Singh	ENSDF	15-Sep-2023	

 $Q(\beta^{-})=19650 \text{ syst}; S(n)=70 \text{ syst}; S(p)=24900 \text{ calc}; Q(\alpha)=-19120 \text{ syst}$ 2021Wa16,2019Mo01

Estimated uncertainties (2021Wa16): 710 for Q(β^{-}), 300 for S(n), 840 for Q(α).

S(p) from 2019Mo01. Q(β^{-}), S(n), Q(α) from 2021Wa16.

$$\begin{split} S(2n) = 2950 \ 710, \ Q(\beta^{-}n) = 16600 \ 770 \ (syst, \ 2021Wa16). \ S(2p) = 47650 \ (2019Mo01, \ theory). \ Q(\beta^{-}2n) = 13830 \ 610, \ Q(\beta^{-}3n) = 9910 \\ 590, \ Q(\beta^{-}4n) = 6370 \ 600, \ Q(\beta^{-}5n) = 520 \ 590 \ (syst, \ deduced \ by \ evaluator \ from \ relevant \ mass \ excesses \ in \ 2021Wa16). \end{split}$$

1990Le03: ⁶⁴Ni(⁴⁸Ca,X),E(⁴⁸Ca)=44 MeV/nucleon; measured fragment spectra versus atomic number using LISE spectrometer at GANIL. Authors stated that no counts were observed for ⁴⁹S.

2018Ta17: ⁴⁹S formed by fragmentation of ⁷⁰Zn³⁰⁺ beam at 345 MeV/nucleon from RIKEN-RIBF accelerator complex. Rotating target of ⁹Be of 15 mm thickness were located at the BigRIPS two-stage ion separator. Particle identification (PID) was achieved by measuring time of flight (TOF), energy loss (ΔE), total kinetic energy (TKE), and magnetic rigidity (B ρ) through event by event analysis of reaction products. Particles of interest were stopped in a 76-mm thick CsI crystal after passing through six 1-mm thick silicon p-i-n diodes, while the magnetic rigidity (B ρ) of the fragments was reconstructed from position and angle measurements at foci using two sets of position-sensitive parallel plate avalanche counters (PPACs). Optimization was done using LISE⁺⁺ simulation code. A total of five events were assigned to ⁴⁹S.

Theoretical calculations:

2019Ne02: calculated S(n), S(2n), posterior probability of existence of neutron-rich nuclei using Bayesian model averaging. 2018Yo06: calculated $T_{1/2}(\beta)$, β -delayed neutron emission probability (Pn), Gamow-Teller (GT) strength distribution, and location

of the Gamow-Teller giant resonances using large-scale shell-model with and without first-forbidden (FF) transitions.

2012Ho19: calculated point matter, neutron and proton radii, quadrupole deformation parameter using Skyrme-Hartree-Fock approach with SkM* and SLy4 interactions.

⁴⁹S Levels

E(level)	Comments			
0	$\%\beta^{-}=100; \ \%\beta^{-}n=?; \ \%\beta^{-}2n=?; \ \%\beta^{-}3n=?; \ \%\beta^{-}4n=?$			
	$\%\beta^{-}5n=?$			
	Only the β^- decay mode is expected, followed by delayed neutron decays, thus 100% β^- decay is assigned by			
	inference However S(n)-70 200 (over 2021We16) and 20 keV (theory 2010Me01) suggests this pushide			

inference. However, $S(n)=70\ 300\ (syst,\ 2021Wa16)$ and 30 keV (theory, 2019Mo01) suggests this nuclide on the margin of being stable towards one-neutron emission.

A total of five events were assigned to 49 S, one event each with tuned setting of the spectrometer for 53 Cl and 57 K, and three events for setting on 54 Ar (2018Ta17).

Theoretical $T_{1/2}(\beta) = 4.0 \text{ ms}, \ \%\beta^{-}n = 31, \ \%\beta^{-}2n = 14, \ \%\beta^{-}3n = 1, \ \%\beta^{-}4n = 0, \ \%\beta^{-}5n = 0 \ (2019Mo01).$

Theoretical $T_{1/2}(\beta)=12.4$ ms, $\%\beta^-n=27.4$, 26.8; $\%\beta^-2n=22.2$, 24.2; $\%\beta^-3n=2.1$, 2.0; $\%\beta^-4n=0.026$, 0.023; $\%\beta^-5n=0$ (2021Mi17); two values for a decay mode refer to different fission barriers.

The observed events are assumed to correspond to the ground-state of ⁴⁹S.

 $T_{1/2}$: half-life of the ⁴⁹S activity has not been measured. It is expected to be greater than the time-of-flight through the beam transport system, which may be about 500 ns. From systematics of half-lives of neighboring S isotopes, the half-life is expected to be <25 ms from 50 ms for ⁴⁶S, 68 ms for ⁴⁵S, 117 ms for ⁴⁴S and 265 ms for ⁴³S, assuming a decreasing trend of half-life as neutron number increases in neutron-rich nuclei. From systematics, $T_{1/2}$ =4 ms in 2021Ko07.

 J^{π} : 5/2⁻ (2019Mo01, theory); 1/2⁻ (syst, 2021Ko07).