¹²C(⁴⁰Ca,2npγ) **1990Ca06**

History								
Type Author		Citation	Literature Cutoff Date					
Full Evaluation	T. W. Burrows ^a	NDS 109, 1879 (2008)	14-Jul-2008					

1990Ca06: E=160 MeV. Measured γ 's, recoil- $\gamma(\theta=40^\circ, 101^\circ, 117^\circ, 142.5^\circ)$, recoil- γ coin, and recoil- $\gamma\gamma$ coin; Compton-suppressed Ge, recoil separator.

2005LiZX: E=230 MeV. Measured γ 's and (recoil) γ -coin; FMA stand-alone experiment with one clover γ -ray detector At 90° to the beam direction. FMA focal-plane detectors consisted of micro-channel plate detectors for determination of position and ionization chamber for Z-identification through energy loss and total energy of the recoils. Test experiment to investigate if a study of ⁴⁹Fe spectroscopy is feasible.

⁴⁹Mn Levels

E(level) [†]	$J^{\pi \ddagger}$		
0.0	5/2 ^{-#}		
261.0 2	$7/2^{-}$		
1059.0 <i>3</i>	9/2-		
1541.0 4	$11/2^{-}$		
2481.0 4	$13/2^{-}$		
3189.0 8	$15/2^{-}$		
4250.0 9	$17/2^{-}$		
4446.0 10	19/2-		
6056.1 14	$(23/2^{-})^{\#}$		

[†] From least-squares fit to $E\gamma$'s (evaluator).

[±] From recoil- $\gamma(\theta)$ and mirror symmetry with ⁴⁹Cr, except As noted.

From the Adopted Levels.

γ ⁽⁴⁹ Mn)

E_{γ}^{\dagger}	I_{γ}	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult.‡
196 <i>1</i>	4	4446.0	19/2-	4250.0	17/2-	D [@]
261.0 [#] 2	100	261.0	$7/2^{-}$	0.0	5/2-	D [@]
482.0 [#] 2	42	1541.0	$11/2^{-}$	1059.0	9/2-	D [@]
708 [#] 1	31	3189.0	$15/2^{-}$	2481.0	13/2-	D [@]
798.0 [#] 2	60	1059.0	9/2-	261.0	$7/2^{-}$	D [@]
940.0 [#] 2	44	2481.0	$13/2^{-}$	1541.0	$11/2^{-}$	D [@]
1059 ^a 1	<3	1059.0	9/2-	0.0	5/2-	
1060 1	15	4250.0	$17/2^{-}$	3189.0	$15/2^{-}$	D [@]
1257 [#] 1	32	4446.0	19/2-	3189.0	$15/2^{-}$	D,Q <mark>&</mark>
1280 [#] 1	41	1541.0	$11/2^{-}$	261.0	$7/2^{-}$	D,Q <mark>&</mark>
1422 <i>1</i>	9	2481.0	$13/2^{-}$	1059.0	9/2-	D,Q <mark>&</mark>
1610 [#] 1	18	6056.1	$(23/2^{-})$	4446.0	19/2-	D,Q
1647 <i>1</i>	21	3189.0	$15/2^{-}$	1541.0	$11/2^{-}$	D,Q <mark>&</mark>
1770 <i>1</i>	8	4250.0	$17/2^{-}$	2481.0	$13/2^{-}$	D,Q <mark>&</mark>

[†] From 1990Ca06. Precision of γ energies ranges from 0.2 keV for strong low-energy gammas to 1 keV for E γ >1 MeV.

[‡] From recoil- $\gamma(\theta)$.

Also reported by 2005LiZX.

12 C(40 Ca,2np γ) 1990Ca06 (continued)

 γ ⁽⁴⁹Mn) (continued)</sup>

[@] Stretched dipole (Δ J=1) transition. [&] Stretched quadrupole (Δ J=2) or Δ J=0 dipole transition. ^{*a*} Placement of transition in the level scheme is uncertain.

 $^{49}_{25}Mn_{24}$