Adopted Levels, Gammas

History									
Type	Author	Citation	Literature Cutoff Date						
Full Evaluation	Balraj Singh	ENSDF	28-Feb-2011						

 $Q(\beta^{-})=11688.4 \ 9$; $S(n)=5398.3 \ 12$; $S(p)=1.45\times10^{4} \ syst$; $Q(\alpha)=-1.368\times10^{4} \ 10$

Note: Current evaluation has used the following Q record 1.097E+4 7 6.27×10³ 7 13890 syst-1438E1 14 2009AuZZ,2003Au03. Estimated $\Delta SP=306 \text{ keV} (2009\text{AuZZ},2003\text{Au}03).$

 $Q(\beta^- n) = 5.820 \text{ MeV } 70, S(2n) = 10770 \ 70, S(2p) = 34380 \ 600 \ (syst) \ (2009AuZZ, 2003Au03).$

 $Q(\beta^-)$: 2003Au03 adopted the data of 1986Mi08. However, there appears to be a discrepancy in $E\beta'$ s with the data of 1983RaZR; see 49 K β^- decay.

Z=19, N=30, neutron rich nucleus, near major shells Z=20 and N=28, shell model calculations. Test of multi-nucleon transfer reaction to study neutron rich nuclei.

Identification of ⁴⁹K in ²³⁸U(p,F) (1972Kl04,1972RiZJ).

1983RaZR, 1982Ca04: U(p,X)E=600 MeV. Measured β 's (scin), γ 's, β (t) and γ (t), n's (long counter), and β n and γ n. The thesis of 1983RaZR is apparently a more complete report of the work presented by 1982Ca04.

2009No01: calculated levels, J, π , shell model in large space.

⁴⁹K Levels

Cross Reference (XREF) Flags

- 50 Ar β^{-} n decay (85 ms)
- $^{238}U(^{48}Ca.X\nu)$

E(level)	$J^{\pi^{\dagger}}$	$T_{1/2}$	XREF	Comments
0.0	(1/2+,3/2+)	1.26 s 5	AB	$%β^-=100; %β^-n=86 9 (1982Ca04)$ $$πd_{3/2}^{-1} \text{ or } πs_{1/2}^{-1} \text{ state.}$ $J^π: \text{ from shell-model predictions in } 2010\text{Br}14, \text{ but another calculation}$ $(2009\text{No}01) \text{ gives } 3/2^+ \text{ as g.s. and } 1/2^+ \text{ slightly above this energy. } ≤5/2 \text{ from log } ft=6.1 \text{ to } 3/2^+ \text{ in } β^- \text{ decay to } ^{49}\text{Cr. } 3/2^+ \text{ from log } ft=5.4 \text{ to } 1/2 \text{ (5.3 MeV)}$ and log $ft=4.5 \text{ to } 5/2^+ \text{ in } β^- \text{ decay to } ^{49}\text{Cr. } \text{Note, however, that correspondence}$ between unbound states observed in ^{49}K $β^- \text{ decay and } ^{48}\text{Ca}(n,X),(n,γ) \text{ should}$ not be considered as well established. $T_{1/2}: \text{ from } β \text{ and neutron counting (1982Ca04). Other: 1.10 s } 30 \text{ (1978De17,}$ decay curve for $γ \text{ rays from } ^{49}\text{K decay).}$ $%β^-\text{n: If } %β^-\text{n}(^9\text{Li})=50\% \text{ 4 (1982Ca04). Other: 90% } 14 \text{ (1983La23. Ir(p,X)}$
91.7 3	(1/2+,3/2+)	8 ns 5	В	E=10 GeV. β n-coin, 4π scin). \$ $\pi d_{3/2}^{-1}$ or $\pi s_{1/2}^{-1}$ state. T _{1/2} : >3 ns from recoil-distance method, <13 ns from $\gamma\gamma$ time distribution of 771-92 $\gamma\gamma$ events (2010Br14).
862.8 <i>3</i>	(5/2+)	2.2 ps 4	В	T _{1/2} : from recoil-distance method (2010Br14). Effective half-life, includes feeding from higher-lying stated.
1102.9? 8	(5/2+)		В	Placement of 1011γ is either to 92-keV level as shown in figure 3 of $2010Br14$ or to the g.s.
1438.3 4	(7/2+)	>0.35 ps	В	$T_{1/2}$: from thick-target data where 575 γ appears as a narrow line (2010Br14). The fit to the ratio $I_{after}/[I_{before}+I_{after}]$ gave $T_{1/2}=3.4$ ps 7 for 575.5 γ which could imply $T_{1/2}$ is much shorter than 2.2 ps for the 863-keV state which is populated by 575 γ .
2104.2 5	(7/2-)	>0.35 ps	В	$\pi f_{7/2}$ state. $T_{1/2}$: from thick-target data where 1241 γ appears as a narrow line (2010Br14).

[†] From shell-model predictions (2010Br14).

Adopted Levels, Gammas (continued)

$\gamma(^{49}K)$

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}	I_{γ}	E_f J_f^{π}	Comments
91.7	$(1/2^+,3/2^+)$	91.7 3	100	$0.0 \ \overline{(1/2^+,3/2^+)}$	
862.8	$(5/2^+)$	771.1 2	100	91.7 $(1/2^+,3/2^+)$	
		862.6 8	7 7	$0.0 \ (1/2^+, 3/2^+)$	
1102.9?	$(5/2^+)$	1011.2 8	100	91.7 $(1/2^+,3/2^+)$	Placement of 1011γ is either to 92-keV level as shown in
					figure 3 of 2010Br14 or to the g.s.
1438.3	$(7/2^+)$	575.5 2	100	862.8 (5/2 ⁺)	
2104.2	$(7/2^{-})$	1241.4 <i>4</i>	100	862.8 (5/2+)	

Adopted Levels, Gammas

Level Scheme

Intensities: Relative photon branching from each level

